1. García de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, No. 4, 1267-1290, 2007.
doi:10.1103/revmodphys.79.1267 Google Scholar
2. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570 Google Scholar
3. Martín-Moreno, L., F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Physical Review Letters, Vol. 86, No. 6, 1114, 2001.
doi:10.1103/physrevlett.86.1114 Google Scholar
4. Silveirinha, Mário G., Pavel A. Belov, and Constantin R. Simovski, "Subwavelength imaging at infrared frequencies using an array of metallic nanorods," Physical Review B --- Condensed Matter and Materials Physics, Vol. 75, No. 3, 035108, 2007.
doi:10.1103/physrevb.75.035108 Google Scholar
5. Ono, Atsushi, Jun-Ichi Kato, and Satoshi Kawata, "Subwavelength optical imaging through a metallic nanorod array," Physical Review Letters, Vol. 95, No. 26, 267407, 2005.
doi:10.1103/physrevlett.95.267407 Google Scholar
6. Rayleigh, L., "III. Note on the remarkable case of diffraction spectra described by Prof. Wood," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, No. 79, 60-65, 1907.
doi:10.1080/14786440709463661 Google Scholar
7. Wood, R. W., "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 4, No. 21, 396-402, 1902.
doi:10.1080/14786440209462857 Google Scholar
8. Auguié, Baptiste and William L. Barnes, "Collective resonances in gold nanoparticle arrays," Physical Review Letters, Vol. 101, No. 14, 143902, 2008.
doi:10.1103/physrevlett.101.143902 Google Scholar
9. Manjavacas, Alejandro, Lauren Zundel, and Stephen Sanders, "Analysis of the limits of the near-field produced by nanoparticle arrays," ACS Nano, Vol. 13, No. 9, 10682-10693, 2019.
doi:10.1021/acsnano.9b05031 Google Scholar
10. Marinica, D. C., A. G. Borisov, and S. V. Shabanov, "Bound states in the continuum in photonics," Physical Review Letters, Vol. 100, No. 18, 183902, 2008.
doi:10.1103/physrevlett.100.183902 Google Scholar
11. Zhen, Bo, Chia Wei Hsu, Ling Lu, A. Douglas Stone, and Marin Soljačić, "Topological nature of optical bound states in the continuum," Physical Review Letters, Vol. 113, No. 25, 257401, 2014.
doi:10.1103/physrevlett.113.257401 Google Scholar
12. Koshelev, K. L., Zarina Fail'evna Sadrieva, Alexey Aleksandrovich Shcherbakov, Yurii Semenovich Kivshar, and A. A. Bogdanov, "Bound states in the continuum in photonic structures," Phys.-USP, Vol. 93, 528-553, 2023. Google Scholar
13. Joseph, Shereena, Saurabh Pandey, Swagato Sarkar, and Joby Joseph, "Bound states in the continuum in resonant nanostructures: An overview of engineered materials for tailored applications," Nanophotonics, Vol. 10, No. 17, 4175-4207, 2021.
doi:10.1515/nanoph-2021-0387 Google Scholar
14. Maslova, Ekaterina E., Mikhail V. Rybin, Andrey A. Bogdanov, and Zarina F. Sadrieva, "Bound states in the continuum in periodic structures with structural disorder," Nanophotonics, Vol. 10, No. 17, 4313-4321, 2021.
doi:10.1515/nanoph-2021-0475 Google Scholar
15. Kang, Meng, Li Mao, Shunping Zhang, Meng Xiao, Hongxing Xu, and Che Ting Chan, "Merging bound states in the continuum by harnessing higher-order topological charges," Light: Science & Applications, Vol. 11, No. 1, 228, 2022.
doi:10.1038/s41377-022-00923-4 Google Scholar
16. Hwang, Min-Soo, Kwang-Yong Jeong, Jae-Pil So, Kyoung-Ho Kim, and Hong-Gyu Park, "Nanophotonic nonlinear and laser devices exploiting bound states in the continuum," Communications Physics, Vol. 5, No. 1, 106, 2022.
doi:10.1038/s42005-022-00884-5 Google Scholar
17. Kang, Meng, Tao Liu, C. T. Chan, and Meng Xiao, "Applications of bound states in the continuum in photonics," Nature Reviews Physics, Vol. 5, No. 11, 659-678, 2023.
doi:10.1038/s42254-023-00642-8 Google Scholar
18. Gomez-Medina, Raquel, Marine Laroche, and Juan José Sáenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Optics Express, Vol. 14, No. 9, 3730-3737, 2006.
doi:10.1364/oe.14.003730 Google Scholar
19. Borisov, A. G., F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Physical Review B, Vol. 71, No. 7, 075408, 2005.
doi:10.1103/physrevb.71.075408 Google Scholar
20. Laroche, Marine, Silvia Albaladejo, Raquel Gómez-Medina, and Juan José Sáenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Physical Review B, Vol. 74, No. 24, 245422, 2006.
doi:10.1103/physrevb.74.245422 Google Scholar
21. Laroche, Marine, Silvia Albaladejo, Rémi Carminati, and Juan José Sáenz, "Optical resonances in one-dimensional dielectric nanorod arrays: Field-induced fluorescence enhancement," Optics Letters, Vol. 32, No. 18, 2762-2764, 2007.
doi:10.1364/ol.32.002762 Google Scholar
22. Du, Junjie, Zhifang Lin, S. T. Chui, Guangjiong Dong, and Weiping Zhang, "Nearly total omnidirectional reflection by a single layer of nanorods," Physical Review Letters, Vol. 110, No. 16, 163902, 2013.
doi:10.1103/physrevlett.110.163902 Google Scholar
23. Ghenuche, Petru, Grégory Vincent, Marine Laroche, Nathalie Bardou, Riad Haïdar, Jean-Luc Pelouard, and Stéphane Collin, "Optical extinction in a single layer of nanorods," Physical Review Letters, Vol. 109, No. 14, 143903, 2012.
doi:10.1103/physrevlett.109.143903 Google Scholar
24. Evlyukhin, Andrey B., Carsten Reinhardt, Andreas Seidel, Boris S. Luk'yanchuk, and Boris N. Chichkov, "Optical response features of Si-nanoparticle arrays," Physical Review B, Vol. 82, No. 4, 045404, 2010.
doi:10.1103/physrevb.82.045404 Google Scholar
25. Evlyukhin, Andrey B., Carsten Reinhardt, Urs Zywietz, and Boris N. Chichkov, "Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions," Physical Review B, Vol. 85, No. 24, 245411, 2012.
doi:10.1103/physrevb.85.245411 Google Scholar
26. Zundel, Lauren and Alejandro Manjavacas, "Finite-size effects on periodic arrays of nanostructures," Journal of Physics: Photonics, Vol. 1, No. 1, 015004, 2018.
doi:10.1088/2515-7647/aae8a2 Google Scholar
27. Sung, Jiha, Erin M. Hicks, Richard P. Van Duyne, and Kenneth G. Spears, "Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles," The Journal of Physical Chemistry C, Vol. 112, No. 11, 4091-4096, 2008.
doi:10.1021/jp077332b Google Scholar
28. Zakomirnyi, V. I., A. E. Ershov, V. S. Gerasimov, S. V. Karpov, H. Ågren, and I. L. Rasskazov, "Collective lattice resonances in arrays of dielectric nanoparticles: A matter of size," Optics Letters, Vol. 44, No. 23, 5743-5746, 2019.
doi:10.1364/ol.44.005743 Google Scholar
29. Karimi, Vahid and Viktoriia E. Babicheva, "Dipole-lattice nanoparticle resonances in finite arrays," Optics Express, Vol. 31, No. 10, 16857-16871, 2023.
doi:10.1364/oe.491334 Google Scholar
30. Schokker, A. Hinke and A. Femius Koenderink, "Statistics of randomized plasmonic lattice lasers," ACS Photonics, Vol. 2, No. 9, 1289-1297, 2015.
doi:10.1021/acsphotonics.5b00226 Google Scholar
31. Hakala, T. K., H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A. J. Moilanen, and P. Törmä, "Lasing in dark and bright modes of a finite-sized plasmonic lattice," Nature Communications, Vol. 8, No. 1, 13687, 2017.
doi:10.1038/ncomms13687 Google Scholar
32. Wang, Danqing, Marc R. Bourgeois, Jun Guan, Ahmad K. Fumani, George C. Schatz, and Teri W. Odom, "Lasing from finite plasmonic nanoparticle lattices," ACS Photonics, Vol. 7, No. 3, 630-636, 2020. Google Scholar
33. Ustimenko, Nikita, Carsten Rockstuhl, and Andrey B. Evlyukhin, "Resonances in finite-size all-dielectric metasurfaces for light trapping and propagation control," Physical Review B, Vol. 109, No. 11, 115436, 2024.
doi:10.1103/physrevb.109.115436 Google Scholar
34. Hoang, Thanh Xuan, Daniel Leykam, Hong-Son Chu, Ching Eng Png, Francisco J. Garcıa-Vidal, and Yuri S. Kivshar, "Collective nature of high-Q resonances in finite-size photonic metastructures," arXiv preprint arXiv:2405.01034, 2024. Google Scholar
35. Volkov, Ilya A., Nikita A. Ustimenko, Danil F. Kornovan, Alexandra S. Sheremet, Roman S. Savelev, and Mihail I. Petrov, "Strongly subradiant states in planar atomic arrays," Nanophotonics, Vol. 13, No. 3, 289-298, 2024.
doi:10.1515/nanoph-2023-0624 Google Scholar
36. Volkov, Ilya, Stanislav Mitsai, Stepan Zhogolev, Danil Kornovan, Alexandra Sheremet, Roman Savelev, and Mihail Petrov, "Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach," Applied Physics Letters, Vol. 124, No. 8, 084001, 2024.
doi:10.1063/5.0189405 Google Scholar
37. Rui, Jun, David Wei, Antonio Rubio-Abadal, Simon Hollerith, Johannes Zeiher, Dan M. Stamper-Kurn, Christian Gross, and Immanuel Bloch, "A subradiant optical mirror formed by a single structured atomic layer," Nature, Vol. 583, No. 7816, 369-374, 2020.
doi:10.1038/s41586-020-2463-x Google Scholar
38. Natarov, Denys M., Volodymyr O. Byelobrov, Ronan Sauleau, Trevor M. Benson, and Alexander I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, Vol. 19, No. 22, 22176-22190, 2011.
doi:10.1364/oe.19.022176 Google Scholar
39. Natarov, Denys M., Ronan Sauleau, Marian Marciniak, and Alexander I. Nosich, "Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires," Plasmonics, Vol. 9, 389-407, 2014.
doi:10.1007/s11468-013-9636-5 Google Scholar
40. Shapoval, Olga V. and Alexander I. Nosich, "Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity," AIP Advances, Vol. 3, No. 4, 042120, 2013.
doi:10.1063/1.4802880 Google Scholar
41. Wei, Q.-H., K.-H. Su, S. Durant, and X. Zhang, "Plasmon resonance of finite one-dimensional Au nanoparticle chains," Nano Letters, Vol. 4, No. 6, 1067-1071, 2004.
doi:10.1021/nl049604h Google Scholar
42. Linton, Chris M. and Paul A. Martin, "Semi-infinite arrays of isotropic point scatterers. A unified approach," SIAM Journal on Applied Mathematics, Vol. 64, No. 3, 1035-1056, 2004.
doi:10.1137/s0036139903427891 Google Scholar
43. Citrin, D. S., "Plasmon polaritons in finite-length metal-nanoparticle chains: The role of chain length unravelled," Nano Letters, Vol. 5, No. 5, 985-989, 2005.
doi:10.1021/nl050513+ Google Scholar
44. Hadad, Y. and Ben Z. Steinberg, "Green's function theory for infinite and semi-infinite particle chains," Physical Review B, Vol. 84, No. 12, 125402, 2011.
doi:10.1103/physrevb.84.125402 Google Scholar
45. Savelev, Roman S., Dmitry S. Filonov, Mihail I. Petrov, Alexander E. Krasnok, Pavel A. Belov, and Yuri S. Kivshar, "Resonant transmission of light in chains of high-index dielectric particles," Physical Review B, Vol. 92, No. 15, 155415, 2015.
doi:10.1103/physrevb.92.155415 Google Scholar
46. Kornovan, Danil F., Roman S. Savelev, Yuri Kivshar, and Mihail I. Petrov, "High-Q localized states in finite arrays of subwavelength resonators," ACS Photonics, Vol. 8, No. 12, 3627-3632, 2021.
doi:10.1021/acsphotonics.1c01262 Google Scholar
47. Michaeli, Lior, Ofer Doron, Yakir Hadad, Haim Suchowski, and Tal Ellenbogen, "Rayleigh anomaly induced phase gradients in finite nanoparticle chains," Nanoscale, Vol. 15, No. 33, 13653-13665, 2023.
doi:10.1039/d3nr02293e Google Scholar
48. Hulst, Hendrik Christoffel and Hendrik C. van de Hulst, Light Scattering by Small Particles, Courier Corporation, 1981.
49. Markel, Vadim A., "Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 38, No. 7, L115, 2005.
doi:10.1088/0953-4075/38/7/l02 Google Scholar
50. Fan, Shanhui, Wonjoo Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," Journal of the Optical Society of America A, Vol. 20, No. 3, 569-572, 2003.
doi:10.1364/josaa.20.000569 Google Scholar
51. Wang, Ken Xingze, Zongfu Yu, Sunil Sandhu, and Shanhui Fan, "Fundamental bounds on decay rates in asymmetric single-mode optical resonators," Optics Letters, Vol. 38, No. 2, 100-102, 2013.
doi:10.1364/ol.38.000100 Google Scholar
52. Blanchard, Cédric, Jean-Paul Hugonin, and Christophe Sauvan, "Fano resonances in photonic crystal slabs near optical bound states in the continuum," Physical Review B, Vol. 94, No. 15, 155303, 2016.
doi:10.1103/physrevb.94.155303 Google Scholar
53. Gustafsson, Mats, Iman Vakili, Sena Esen Bayer Keskin, Daniel Sjoberg, and Christer Larsson, "Optical theorem and forward scattering sum rule for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3818-3826, 2012.
doi:10.1109/tap.2012.2201113 Google Scholar
54. Berg, M. J., C. M. Sorensen, and A. Chakrabarti, "A new explanation of the extinction paradox," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, No. 7, 1170-1181, 2011.
doi:10.1016/j.jqsrt.2010.08.024 Google Scholar
55. Miroshnichenko, Andrey E., Andrey B. Evlyukhin, Ye Feng Yu, Reuben M. Bakker, Arkadi Chipouline, Arseniy I. Kuznetsov, Boris Luk'yanchuk, Boris N. Chichkov, and Yuri S. Kivshar, "Nonradiating anapole modes in dielectric nanoparticles," Nature Communications, Vol. 6, No. 1, 8069, 2015.
doi:10.1038/ncomms9069 Google Scholar
56. Kerker, M., D.-S. Wang, and C. L. Giles, "Electromagnetic scattering by magnetic spheres," Journal of the Optical Society of America, Vol. 73, No. 6, 765-767, 1983.
doi:10.1364/josa.73.000765 Google Scholar
57. Markel, Vadim A., "Antisymmetrical optical states," Journal of the Optical Society of America B, Vol. 12, No. 10, 1783-1791, 1995. Google Scholar
58. Tretyakov, Sergei, "Maximizing absorption and scattering by dipole particles," Plasmonics, Vol. 9, No. 4, 935-944, 2014.
doi:10.1007/s11468-014-9699-y Google Scholar
59. Fleury, Romain, Jason Soric, and Andrea Alù, "Physical bounds on absorption and scattering for cloaked sensors," Physical Review B, Vol. 89, No. 4, 045122, Jan. 2014.
doi:10.1103/physrevb.89.045122 Google Scholar
60. Yariv, A., "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, Vol. 14, No. 4, 483-485, 2002.
doi:10.1109/68.992585 Google Scholar
61. Mohammadi Estakhri, Nasim and Andrea Alù, "Minimum-scattering superabsorbers," Physical Review B, Vol. 89, No. 12, 121416, Mar. 2014.
doi:10.1103/physrevb.89.121416 Google Scholar
62. Auguié, Baptiste, Xesús M. Bendaña, William L. Barnes, and F. Javier García de Abajo, "Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate," Physical Review B, Vol. 82, No. 15, 155447, 2010.
doi:10.1103/physrevb.82.155447 Google Scholar