Vol. 183
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-07-27
Spatiotemporal Encoding Metasurface Based on BPSO-GA Optimization Method (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 183, 67-79, 2025
Abstract
This paper introduces a spatiotemporal encoding method based on metasurface that enables precise frequency control and functional switching of radiation beams. The metasurface is configured with subarrays, and each subarray is designed to reflect a specific frequency, thereby achieving unique multi-target signal diversity. By manipulating the spatiotemporal phase of subarray elements, the metasurface can generate far-field radiation patterns with beam characteristics of consistent beam angle at different distances, or beam characteristics of consistent distance with different beam angles. The radiation energy distribution at harmonic frequencies is verified to remain symmetry under various 1 bit spatiotemporal encoding matrices, while the symmetry is verified to be broken by 2 bit spatiotemporal encoding matrices. An optimization method of genetic algorithm (GA) improved binary particle swarm optimization (BPSO) based on 2-bit-coding is thus developed to optimize the spatiotemporal modulation of the metasurface subarray. The GA with the advantage of the crossover mutation operation is utilized to enhance population diversity and thus prevent the algorithm from falling into local optimality with improved search efficiency in high-dimensional discrete space. The optimization method balances different performance parameters and can achieve unique multi-target signal diversity, thereby improving the metasurface's ability to dynamically control and manipulate energy distribution. Using a 1-bit cross-switching mechanism with a duty cycle of 50%, the metasurface can suppress specific harmonic frequencies on the line of sight to less than -60 dBi while keeping the sidelobes below -20 dBi. The technology can precisely control the harmonic energy distribution while allowing beam at specific harmonic frequencies to be absorbed or reflected, which realize advanced breakthrough for effective selective stealth. Simulation results validate the proposed digital encoding optimization method, and the mainlobe gain of the metasurface harmonics is obtained to be more than 20 dBi. This paper algorithmically improves the beam gain of the metasurface and explores the versatile applications of spatiotemporal metasurfaces.
Citation
Xueyan Wang, Rui Xi, Xinan Hou, Huanran Qiu, Zihui Liu, Dexiao Xia, Xiaokui Kang, Shiyun Ma, Yuanhao Zhang, Long Li, Lan Lan, and Guisheng Liao, "Spatiotemporal Encoding Metasurface Based on BPSO-GA Optimization Method (Invited Paper)," Progress In Electromagnetics Research, Vol. 183, 67-79, 2025.
doi:10.2528/PIER24121901
References

1. Yu, Nanfang and Federico Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139-150, 2014.
doi:10.1038/nmat3839

2. Chen, Hou-Tong, Antoinette J. Taylor, and Nanfang Yu, "A review of metasurfaces: Physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 076401, 2016.
doi:10.1088/0034-4885/79/7/076401

3. Liu, Shuo, Tie Jun Cui, Quan Xu, Di Bao, Liangliang Du, Xiang Wan, Wen Xuan Tang, Chunmei Ouyang, Xiao Yang Zhou, Hao Yuan, et al., "Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves," Light: Science & Applications, Vol. 5, No. 5, e16076, 2016.
doi:10.1038/lsa.2016.76

4. Chen, Hongsheng, Lixin Ran, Jiangtao Huangfu, Xianmin Zhang, Kangsheng Chen, Tomasz M. Grzegorczyk, and Jin Au Kong, "Left-handed materials composed of only S-shaped resonators," Physical Review E --- Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 5, 057605, 2004.
doi:10.1103/physreve.70.057605

5. Yang, Xin Mi, Xiao Yang Zhou, Qiang Cheng, Hui Feng Ma, and Tie Jun Cui, "Diffuse reflections by randomly gradient index metamaterials," Optics Letters, Vol. 35, No. 6, 808-810, 2010.
doi:10.1364/ol.35.000808

6. Lier, Erik, Douglas H. Werner, Clinton P. Scarborough, Qi Wu, and Jeremy A. Bossard, "An octave-bandwidth negligible-loss radiofrequency metamaterial," Nature Materials, Vol. 10, No. 3, 216-222, 2011.
doi:10.1038/nmat2950

7. Liu, Yahong and Xiaopeng Zhao, "Perfect absorber metamaterial for designing low-RCS patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1473-1476, 2014.
doi:10.1109/lawp.2014.2341299

8. Zhao, Yi, Jun Gao, Xiangyu Cao, Tao Liu, Liming Xu, Xiao Liu, and Lili Cong, "In-band RCS reduction of waveguide slot array using metasurface bars," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 943-947, 2016.
doi:10.1109/tap.2016.2633951

9. Chen, Hongsheng, Bae-Ian Wu, Baile Zhang, and Jin Au Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 99, No. 6, 063903, 2007.
doi:10.1103/physrevlett.99.063903

10. Qian, Chao, Bin Zheng, Yichen Shen, Li Jing, Erping Li, Lian Shen, and Hongsheng Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nature Photonics, Vol. 14, No. 6, 383-390, 2020.
doi:10.1038/s41566-020-0604-2

11. Chen, Hongsheng, Bin Zheng, Lian Shen, Huaping Wang, Xianmin Zhang, Nikolay I. Zheludev, and Baile Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, No. 1, 2652, 2013.
doi:10.1038/ncomms3652

12. Yang, Yihao, Zhen Gao, Haoran Xue, Li Zhang, Mengjia He, Zhaoju Yang, Ranjan Singh, Yidong Chong, Baile Zhang, and Hongsheng Chen, "Realization of a three-dimensional photonic topological insulator," Nature, Vol. 565, No. 7741, 622-626, 2019.
doi:10.1038/s41586-018-0829-0

13. Yang, Yihao, Liqiao Jing, Bin Zheng, Ran Hao, Wenyan Yin, Erping Li, Costas M. Soukoulis, and Hongsheng Chen, "Full-polarization 3D metasurface cloak with preserved amplitude and phase," Advanced Materials, Vol. 28, No. 32, 6866-6871, 2016.
doi:10.1002/adma.201600625

14. Zheng, Bin, Huan Lu, Chao Qian, Dexin Ye, Yu Luo, and Hongsheng Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 1-7, 2023.
doi:10.23919/emsci.2023.0009

15. Chen, Wengang, Constantine A. Balanis, and Craig R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, Jun. 2015.
doi:10.1109/tap.2015.2414440

16. Cui, Tie Jun, Mei Qing Qi, Xiang Wan, Jie Zhao, and Qiang Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99

17. Li, Jun-Xiang, Tao Jin, Daniel Erni, Fan-Yi Meng, Qun Wu, and Wei-Nan Li, "Design and numerical demonstration of a 2D millimeter-wave beam-scanning reflectarray based on liquid crystals and a static driving technique," Journal of Physics D: Applied Physics, Vol. 52, No. 27, 275103, 2019.
doi:10.1088/1361-6463/ab16bc

18. Qian, Chao, Yuetian Jia, Zhedong Wang, Jieting Chen, Pujing Lin, Xiaoyue Zhu, Erping Li, and Hongsheng Chen, "Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning," Advanced Photonics, Vol. 6, No. 1, 016001, 2024.
doi:10.1117/1.ap.6.1.016001

19. Zhao, Jie, Xi Yang, Jun Yan Dai, Qiang Cheng, Xiang Li, Ning Hua Qi, Jun Chen Ke, Guo Dong Bai, Shuo Liu, Shi Jin, et al., "Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems," National Science Review, Vol. 6, No. 2, 231-238, 2019.
doi:10.1093/nsr/nwy135

20. Ke, Jun Chen, Jun Yan Dai, Jun Wei Zhang, Zhanye Chen, Ming Zheng Chen, Yunfeng Lu, Lei Zhang, Li Wang, Qun Yan Zhou, Long Li, et al., "Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases," Light: Science & Applications, Vol. 11, No. 1, 273, 2022.
doi:10.1038/s41377-022-00973-8

21. Yang, Huanhuan, Fan Yang, Shenheng Xu, Yilin Mao, Maokun Li, Xiangyu Cao, and Jun Gao, "A 1-bit 10 × 10 reconfigurable reflectarray antenna: Design, optimization, and experiment," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2246-2254, 2016.
doi:10.1109/tap.2016.2550178

22. Pan, Xiaotian, Fan Yang, Shenheng Xu, and Maokun Li, "A 10 240-element reconfigurable reflectarray with fast steerable monopulse patterns," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 173-181, 2021.
doi:10.1109/tap.2020.3008623

23. Xu, Peng, Wei Xiang Jiang, Xiao Cai, Shi Hao Bai, and Tie Jun Cui, "An integrated coding-metasurface-based array antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 891-899, 2019.
doi:10.1109/tap.2019.2944529

24. Alhafid, Abdulrahaman Kh., Sedki Younis, and Yessar Ezzaldeen Mohammed Ali, "Enhanced far-field localization scheme using multi-RIS and efficient beam sweeping," Progress In Electromagnetics Research C, Vol. 140, 163-175, 2024.
doi:10.2528/pierc23112903

25. Diaby, Fatimata, Antonio Clemente, Ronan Sauleau, Kien T. Pham, and Laurent Dussopt, "2 bit reconfigurable unit-cell and electronically steerable transmitarray at Ka-band," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 5003-5008, 2020.
doi:10.1109/tap.2019.2955655

26. Wang, Peng, Zhenning Li, Zhaohui Wei, Tong Wu, Chao Luo, Wen Jiang, Tao Hong, Gert Frølund Pedersen, and Ming Shen, "Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 6, 4962-4975, 2024.
doi:10.1109/tap.2024.3349778

27. Li, Shangyang, Zhuoyang Liu, Shilei Fu, Yan Wang, and Feng Xu, "Intelligent beamforming via physics-inspired neural networks on programmable metasurface," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4589-4599, 2022.
doi:10.1109/tap.2022.3140891

28. Zhang, Lei, Ming Zheng Chen, Wankai Tang, Jun Yan Dai, Long Miao, Xiao Yang Zhou, Shi Jin, Qiang Cheng, and Tie Jun Cui, "A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces," Nature Electronics, Vol. 4, No. 3, 218-227, 2021.
doi:10.1038/s41928-021-00554-4

29. Yang, Jin, Jun Chen Ke, Wen Kang Cao, Ming Zheng Chen, Qiang Cheng, Vincenzo Galdi, and Tie Jun Cui, "Simultaneous conversion of polarization and frequency via time-division-multiplexing metasurfaces," Advanced Optical Materials, Vol. 9, No. 22, 2101043, 2021.
doi:10.1002/adom.202101043

30. Luo, Zhangjie, Zhiming Zhang, Junwei Tai, Lei Zhang, Chenglong Gao, Hui Feng Ma, Wei Xiang Jiang, Qiang Cheng, and Tie Jun Cui, "Fully breaking entanglement of multiple harmonics for space- and frequency-division multiplexing wireless applications via space-time-coding metasurface," Advanced Science, Vol. 11, No. 34, 2404558, 2024.
doi:10.1002/advs.202404558

31. Xiong, Qi, Zuojun Zhang, Cheng Huang, Mingbo Pu, Jun Luo, Yinghui Guo, Jia Ye, Wei Pan, Xiaoliang Ma, Lianshan Yan, and Xiangang Luo, "Amplitude-phase independently encoding space-division multiplexed wireless communication using beamforming reconfigurable metasurfaces," Advanced Optical Materials, Vol. 12, No. 28, 2401181, 2024.
doi:10.1002/adom.202401181

32. Wang, Xiaoyi and Christophe Caloz, "Spacetime-modulated metasurface for spatial multiplexing communication," 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), X-465, Rome, Italy, Sep. 2019.
doi:10.1109/metamaterials.2019.8900877

33. Gunawan, Ridowati, Edi Winarko, and Reza Pulungan, "A BPSO-based method for high-utility itemset mining without minimum utility threshold," Knowledge-Based Systems, Vol. 190, 105164, 2020.
doi:10.1016/j.knosys.2019.105164

34. Qian, Chao, Xiao Lin, Xiaobin Lin, Jian Xu, Yang Sun, Erping Li, Baile Zhang, and Hongsheng Chen, "Performing optical logic operations by a diffractive neural network," Light: Science & Applications, Vol. 9, No. 1, 59, 2020.
doi:10.1038/s41377-020-0303-2