1. Ishimaru, Akira, Wave Propagation and Scattering in Random Media, Vol. 2, Vol. 1, Academic Press, New York, 1978.
doi:10.1109/9780470547045
2. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, New York, 1985.
doi:10.1029/jb084ib10p05669
3. Tsang, L., J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Vol. 1, Wiley Interscience, New York, 2000.
doi:10.1002/0471224286
4. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Wiley-Interscience, New York, 2001.
doi:10.1002/0471224308
5. Tang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3, Wiley-Interscience, New York, 2001.
doi:10.1002/0471224278
6. Shi, Jiancheng, Chuan Xiong, and Lingmei Jiang, "Review of snow water equivalent microwave remote sensing," Science China Earth Sciences, Vol. 59, 731-745, 2016.
doi:10.1007/s11430-015-5225-0
7. Ding, Kung-Hau, Xiaolan Xu, and Leung Tsang, "Electromagnetic scattering by bicontinuous random microstructures with discrete permittivities," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 8, 3139-3151, Aug. 2010.
doi:10.1109/tgrs.2010.2043953
8. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
doi:10.1137/1.9780898718003
9. Saad, Youcef and Martin H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986.
doi:10.1137/0907058
10. Xue, Bo-Wen, Rui Guo, Mao-Kun Li, Sheng Sun, and Xiao-Min Pan, "Deep-learning-equipped iterative solution of electromagnetic scattering from dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 7, 5954-5966, 2023.
doi:10.1109/tap.2023.3264701
11. Ma, Zhenchao, Kuiwen Xu, Rencheng Song, Chao-Fu Wang, and Xudong Chen, "Learning-based fast electromagnetic scattering solver through generative adversarial network," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 2194-2208, 2021.
doi:10.1109/tap.2020.3026447
12. Abdelrahman, Mohamed A., Ankush Gupta, and Wael A. Deabes, "A feature-based solution to forward problem in electrical capacitance tomography of conductive materials," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 2, 430-441, Feb. 2011.
doi:10.1109/tim.2010.2049224
13. Caorsi, S. and P. Gamba, "Electromagnetic detection of dielectric cylinders by a neural network approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 820-827, Mar. 1999.
doi:10.1109/36.752198
14. Bermani, E., S. Caorsi, A. Massa, and M. Raffetto, "On the training patterns of a neural network for target localization in the spatial domain," Microwave and Optical Technology Letters, Vol. 28, No. 3, 207-209, 2001.
doi:10.1002/1098-2760(20010205)28:3<207::aid-mop17>3.0.co;2-7
15. Raissi, Maziar and George Em Karniadakis, "Hidden physics models: Machine learning of nonlinear partial differential equations," Journal of Computational Physics, Vol. 357, 125-141, 2018.
doi:10.1016/j.jcp.2017.11.039
16. Raissi, M., P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, Vol. 378, 686-707, 2019.
doi:10.1016/j.jcp.2018.10.045
17. Jin, Lei, Jialei Xie, Baicao Pan, and Guoqing Luo, "Generalized phase retrieval model based on physics-inspired network for holographic metasurface (Invited Paper)," Progress In Electromagnetics Research, Vol. 178, 103-110, 2023.
doi:10.1117/12.3023658
18. Zhang, Pan, Yanyan Hu, Yuchen Jin, Shaogui Deng, Xuqing Wu, and Jiefu Chen, "A Maxwell's equations based deep learning method for time domain electromagnetic simulations," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, 35-40, 2021.
doi:10.1109/wmcs49442.2020.9172407
19. Son, Seho, Hyunseung Lee, Dayeon Jeong, Ki-Yong Oh, and Kyung Ho Sun, "A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor," Advanced Engineering Informatics, Vol. 57, 102035, 2023.
doi:10.1016/j.aei.2023.102035
20. Zhang, Jun-Bo, Da-Miao Yu, and Xiao-Min Pan, "Physics-informed neural networks for the solution of electromagnetic scattering by integral equations," 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1-2, Xuzhou, China, 2022.
doi:10.1109/aces-china56081.2022.10065316
21. Bai, Xuyang and Shurun Tan, "Layered soil remote sensing with multichannel passive microwave observations using a physics-embedded artificial intelligence framework: A theoretical study," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-12, 2023.
doi:10.1109/tgrs.2023.3327781
22. Xu, Xiaolan, Leung Tsang, and Simon Yueh, "Electromagnetic models of co/cross polarization of bicontinuous/DMRT in radar remote sensing of terrestrial snow at X- and Ku-band for CoReH2O and SCLP applications," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 3, 1024-1032, Jun. 2012.
doi:10.1109/jstars.2012.2190719
23. Tsang, Leung, Jin Pan, Ding Liang, Zhongxin Li, Donald W. Cline, and Yunhua Tan, "Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 4, 990-1004, Apr. 2007.
doi:10.1109/tgrs.2006.888854
24. Tan, Shurun, Wenmo Chang, Leung Tsang, Juha Lemmetyinen, and Martin Proksch, "Modeling both active and passive microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple scattering and backscattering enhancement," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 9, 4418-4430, Sep. 2015.
doi:10.1109/jstars.2015.2469290
25. Nocedal, Jorge and Stephen J. Wright, Numerical Optimization, Springer, 1999.
doi:10.1137/0801023