Vol. 183
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-08-11
Global Designed Angle-Multiplexed Metasurface for Holographic Imaging Enabled by the Diffractive Neural Network
By
Progress In Electromagnetics Research, Vol. 183, 81-90, 2025
Abstract
Diffractive optical elements, including holograms and metasurfaces, are widely employed in imaging, display, and information processing systems. To enhance information capacity, various multiplexing techniques such as wavelength, polarization, and spatial multiplexing have been extensively explored. However, the angular optical memory effect induces strong correlations in the diffracted output under varying angles of incidence, thereby fundamentally limiting the use of illumination angle as an independent degree of freedom in multiplexing strategies. Here, we propose and experimentally demonstrate a globally designed angle-multiplexed metasurface hologram enabled by a diffractive neural network (DNN). Angular multiplexing in the DNN is realized by harnessing illumination angle-dependent phase delays across local units, rather than relying on complex local designs with intrinsic angular dispersion. The DNN is trained using the complex electric field distributions and corresponding target images for each incident angle, enabling end-to-end optimization of the entire metasurface phase profile to encode multiple angular channels simultaneously. Besides, phase modulation of circularly polarized transmitted waves is achieved via geometric phase engineering, using a single-layer and fabrication-compatible meta-atom design without relying on multilayer stacking or inter-resonator coupling. Experimental measurements validate the high-fidelity reconstruction of both images at their respective angles, consistent with numerical simulations. Furthermore, robustness studies confirm that the proposed metasurface can tolerate reasonable variations in incident magnitude, angle, and frequency, as well as fabrication-induced phase errors, while preserving imaging fidelity. The proposed metasurface and design strategy offer a scalable platform for high-density information encoding and multiplexed optical systems, with potential applications in augmented reality, secure communication, and multi-view display technologies.
Citation
Dashuang Liao, Chan Wang, Xiaokang Zhu, Liqiao Jing, Min Li, and Zuojia Wang, "Global Designed Angle-Multiplexed Metasurface for Holographic Imaging Enabled by the Diffractive Neural Network," Progress In Electromagnetics Research, Vol. 183, 81-90, 2025.
doi:10.2528/PIER25052305
References

1. Qian, Chao, Bin Zheng, Yichen Shen, Li Jing, Erping Li, Lian Shen, and Hongsheng Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nature Photonics, Vol. 14, No. 6, 383-390, 2020.
doi:10.1038/s41566-020-0604-2

2. Chen, Hongsheng, Bae-Ian Wu, Baile Zhang, and Jin Au Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 99, No. 6, 063903, 2007.
doi:10.1103/physrevlett.99.063903

3. Chen, Hongsheng, Bin Zheng, Lian Shen, Huaping Wang, Xianmin Zhang, Nikolay I. Zheludev, and Baile Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, No. 1, 2652, 2013.
doi:10.1038/ncomms3652

4. Wang, Shuai, Zi-Lan Deng, Yujie Wang, Qingbin Zhou, Xiaolei Wang, Yaoyu Cao, Bai-Ou Guan, Shumin Xiao, and Xiangping Li, "Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers," Light: Science & Applications, Vol. 10, No. 1, 24, 2021.

5. Yu, Shixing, Long Li, Guangming Shi, Cheng Zhu, and Yan Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Applied Physics Letters, Vol. 108, No. 24, 241901, 2016.
doi:10.1063/1.4953786

6. Liao, Dashuang, Xue Ren, Liqiao Jing, Min Li, Hongsheng Chen, and Zuojia Wang, "Chiral metasurface enabled circularly polarized OAM-generating folded transmitarray antenna with high-gain low-profile and broadband characteristics," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 6, 4737-4746, 2023.
doi:10.1109/tap.2023.3266509

7. Ni, Xingjie, Alexander V. Kildishev, and Vladimir M. Shalaev, "Metasurface holograms for visible light," Nature Communications, Vol. 4, No. 1, 2807, 2013.
doi:10.1038/ncomms3807

8. Li, Lianlin, Tie Jun Cui, Wei Ji, Shuo Liu, Jun Ding, Xiang Wan, Yun Bo Li, Menghua Jiang, Cheng-Wei Qiu, and Shuang Zhang, "Electromagnetic reprogrammable coding-metasurface holograms," Nature Communications, Vol. 8, No. 1, 197, 2017.
doi:10.1038/s41467-017-00164-9

9. Chen, Mu Ku, Yongfeng Wu, Lei Feng, Qingbin Fan, Minghui Lu, Ting Xu, and Din Ping Tsai, "Principles, functions, and applications of optical meta-lens," Advanced Optical Materials, Vol. 9, No. 4, 2001414, 2021.
doi:10.1002/adom.202001414

10. Wang, Zanyang, Lu Song, Xuchun Zhang, Xin Wang, Zuojia Wang, Hongsheng Chen, Min Li, and Dashuang Liao, "Synergizing radiation regulation and cross-band stealth with passive folded metasurfaces," Advanced Functional Materials, Vol. 35, No. 28, 2421782, 2025.
doi:10.1002/adfm.202421782

11. Wang, Zuojia, Hui Jia, Kan Yao, Wenshan Cai, Hongsheng Chen, and Yongmin Liu, "Circular dichroism metamirrors with near-perfect extinction," ACS Photonics, Vol. 3, No. 11, 2096-2101, 2016.
doi:10.1021/acsphotonics.6b00533

12. Liang, Yao, Han Lin, Kirill Koshelev, Fengchun Zhang, Yunyi Yang, Jiayang Wu, Yuri Kivshar, and Baohua Jia, "Full-stokes polarization perfect absorption with diatomic metasurfaces," Nano Letters, Vol. 21, No. 2, 1090-1095, 2021.
doi:10.1021/acs.nanolett.0c04456

13. Wang, Bo, Fengliang Dong, Qi-Tong Li, Dong Yang, Chengwei Sun, Jianjun Chen, Zhiwei Song, Lihua Xu, Weiguo Chu, Yun-Feng Xiao, et al., "Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms," Nano Letters, Vol. 16, No. 8, 5235-5240, 2016.
doi:10.1021/acs.nanolett.6b02326

14. Li, Xiong, Lianwei Chen, Yang Li, Xiaohu Zhang, Mingbo Pu, Zeyu Zhao, Xiaoliang Ma, Yanqin Wang, Minghui Hong, and Xiangang Luo, "Multicolor 3D meta-holography by broadband plasmonic modulation," Science Advances, Vol. 2, No. 11, e1601102, 2016.
doi:10.1126/sciadv.1601102

15. Zheng, Yi-Wei, Fan Chu, Fan-Chuan Lin, Yi-Xiao Hu, Yi-Long Li, Yi Zheng, Di Wang, and Qiong-Hua Wang, "Wide-viewing-angle color holographic 3D display system with high brightness encoding," PhotoniX, Vol. 6, No. 1, 3, 2025.
doi:10.1186/s43074-025-00162-x

16. Sun, Shuo, Jin Li, Xiaoxun Li, Yaoyao Feng, and Liang Chen, "Ferrofluid-assisted dynamic metasurface 3D holography endowed with rapid, linear, and high-contrast color modulation," Laser & Photonics Reviews, Vol. 19, No. 8, 2401417, 2025.
doi:10.1002/lpor.202401417

17. Li, Jin, Xiaoxun Li, Xiangyu Huang, Robin Kaissner, Frank Neubrech, Shuo Sun, and Na Liu, "High space-bandwidth-product (SBP) hologram carriers toward photorealistic 3D holography," Laser & Photonics Reviews, Vol. 18, No. 7, 2301173, 2024.
doi:10.1002/lpor.202301173

18. Sun, Shuo, Jin Li, Xiaoxun Li, Xiangyu Huang, Yi Zhang, and Liang Chen, "High-efficiency, broadband, and low-crosstalk 3D holography by multi-layer holographic-lens integrated metasurface," APL Photonics, Vol. 9, No. 8, 2024.
doi:10.1063/5.0218862

19. Zhao, Ruizhe, Qunshuo Wei, Yuzhao Li, Xin Li, Guangzhou Geng, Xiaowei Li, Junjie Li, Yongtian Wang, and Lingling Huang, "Stereo jones matrix holography with longitudinal polarization transformation," Laser & Photonics Reviews, Vol. 17, No. 8, 2200982, 2023.
doi:10.1002/lpor.202200982

20. Wang, Di, Yi-Long Li, Xin-Ru Zheng, Ruo-Nan Ji, Xin Xie, Kun Song, Fan-Chuan Lin, Nan-Nan Li, Zhao Jiang, Chao Liu, et al., "Decimeter-depth and polarization addressable color 3D meta-holography," Nature Communications, Vol. 15, No. 1, 8242, 2024.
doi:10.1038/s41467-024-52267-9

21. Zheng, Guoxing, Nan Zhou, Liangui Deng, Gongfa Li, Jin Tao, and Zile Li, "Full-space metasurface holograms in the visible range," Optics Express, Vol. 29, No. 2, 2920-2930, 2021.
doi:10.1364/oe.417202

22. Huang, Lingling, Xianzhong Chen, Holger Mühlenbernd, Hao Zhang, Shumei Chen, Benfeng Bai, Qiaofeng Tan, Guofan Jin, Kok-Wai Cheah, Cheng-Wei Qiu, et al., "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications, Vol. 4, No. 1, 2808, 2013.
doi:10.1038/ncomms3808

23. Liang, Xiao, Liangui Deng, Xin Shan, Zile Li, Zhou Zhou, Zhiqiang Guan, and Guoxing Zheng, "Asymmetric hologram with a single-size nanostructured metasurface," Optics Express, Vol. 29, No. 13, 19964-19974, 2021.
doi:10.1364/oe.430217

24. Kim, Hyeonhee, Joonkyo Jung, and Jonghwa Shin, "Bidirectional vectorial holography using bi-layer metasurfaces and its application to optical encryption," Advanced Materials, Vol. 36, No. 44, 2406717, 2024.
doi:10.1002/adma.202406717

25. Chen, Ke, Guowen Ding, Guangwei Hu, Zhongwei Jin, Junming Zhao, Yijun Feng, Tian Jiang, Andrea Alù, and Cheng-Wei Qiu, "Directional Janus metasurface," Advanced Materials, Vol. 32, No. 2, 1906352, 2020.
doi:10.1002/adma.201906352

26. Zhang, Ming, Mingbo Pu, Fei Zhang, Yinghui Guo, Qiong He, Xiaoliang Ma, Yijia Huang, Xiong Li, Honglin Yu, and Xiangang Luo, "Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials," Advanced Science, Vol. 5, No. 10, 1800835, 2018.
doi:10.1002/advs.201800835

27. Malek, Stephanie C., Ho-Seok Ee, and Ritesh Agarwal, "Strain multiplexed metasurface holograms on a stretchable substrate," Nano Letters, Vol. 17, No. 6, 3641-3645, 2017.
doi:10.1021/acs.nanolett.7b00807

28. Zhang, Xinyu, Yuchen Gao, Wei Hu, Qi Luo, Tao Hong, Kai-Da Xu, and Wen Jiang, "Conformal reconfigurable holographic metasurface for multifunctional radiation and scattering modulation," Optics Express, Vol. 33, No. 2, 2047-2059, 2025.
doi:10.1364/oe.550322

29. Yang, Jinxin, Zhao Xu, Jinhao Xin, and Zhengyong Song, "Temperature-assisted terahertz reconfigurable metasurface for multi-polarization holographic display and encryption," Optics & Laser Technology, Vol. 181, 111968, 2025.
doi:10.1016/j.optlastec.2024.111968

30. Haimov, Tamar, Koray Aydin, and Jacob Scheuer, "Reconfigurable holograms using VO2-based tunable metasurface," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 27, No. 1, 1-8, 2021.
doi:10.1109/jstqe.2020.3011678

31. Intaravanne, Yuttana and Xianzhong Chen, "Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles," Nanophotonics, Vol. 9, No. 5, 1003-1014, 2020.
doi:10.1515/nanoph-2019-0479

32. Wen, Dandan, Fuyong Yue, Guixin Li, Guoxing Zheng, Kinlong Chan, Shumei Chen, Ming Chen, King Fai Li, Polis Wing Han Wong, Kok Wai Cheah, et al., "Helicity multiplexed broadband metasurface holograms," Nature Communications, Vol. 6, No. 1, 8241, 2015.
doi:10.1038/ncomms9241

33. Yan, Tao, Qian Ma, Shi Sun, Qiang Xiao, Iqbal Shahid, Xinxin Gao, and Tie Jun Cui, "Polarization multiplexing hologram realized by anisotropic digital metasurface," Advanced Theory and Simulations, Vol. 4, No. 6, 2100046, 2021.
doi:10.1002/adts.202100046

34. Zhang, Lei, Hongbo Wang, Qiang Jiang, Liangzhi Han, Xuedian Zhang, and Songlin Zhuang, "Dual-wavelength multiplexed metasurface holography based on two-photon polymerization lithography," Nanophotonics, Vol. 14, No. 5, 581-588, 2025.
doi:10.1515/nanoph-2024-0705

35. Zhao, Tianyu, Yihui Wu, Yi Xing, Yue Wang, Jie Wu, and Wenchao Zhou, "Design of the polarization-independent wavelength multiplexing holographic metasurface," Photonics, Vol. 10, No. 2, 139, 2023.
doi:10.3390/photonics10020139

36. Yin, Yongyao, Qiang Jiang, Hongbo Wang, Jianghong Liu, Yiyang Xie, Qiuhua Wang, Yongtian Wang, and Lingling Huang, "Multi-dimensional multiplexed metasurface holography by inverse design," Advanced Materials, Vol. 36, No. 21, 2312303, 2024.
doi:10.1002/adma.202312303

37. Ye, Weimin, Franziska Zeuner, Xin Li, Bernhard Reineke, Shan He, Cheng-Wei Qiu, Juan Liu, Yongtian Wang, Shuang Zhang, and Thomas Zentgraf, "Spin and wavelength multiplexed nonlinear metasurface holography," Nature Communications, Vol. 7, No. 1, 11930, 2016.
doi:10.1038/ncomms11930

38. Deng, Juan, Yan Yang, Jin Tao, Liangui Deng, Daoqun Liu, Zhiqiang Guan, Gongfa Li, Zile Li, Shaohua Yu, Guoxing Zheng, et al., "Spatial frequency multiplexed meta-holography and meta-nanoprinting," ACS Nano, Vol. 13, No. 8, 9237-9246, 2019.
doi:10.1021/acsnano.9b03738

39. Wang, Jian, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur, and Alan E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.
doi:10.1038/nphoton.2012.138

40. Ren, Haoran, Gauthier Briere, Xinyuan Fang, Peinan Ni, Rajath Sawant, Sébastien Héron, Sébastien Chenot, Stéphane Vézian, Benjamin Damilano, Virginie Brändli, Stefan A. Maier, and Patrice Genevet, "Metasurface orbital angular momentum holography," Nature Communications, Vol. 10, No. 1, 2986, 2019.

41. Fang, Xinyuan, Haoran Ren, and Min Gu, "Orbital angular momentum holography for high-security encryption," Nature Photonics, Vol. 14, No. 2, 102-108, 2020.
doi:10.1038/s41566-019-0560-x

42. Jin, Lei, Yao-Wei Huang, Zhongwei Jin, Robert C. Devlin, Zhaogang Dong, Shengtao Mei, Menghua Jiang, Wei Ting Chen, Zhun Wei, Hong Liu, et al., "Dielectric multi-momentum meta-transformer in the visible," Nature Communications, Vol. 10, No. 1, 4789, 2019.
doi:10.1038/s41467-019-12637-0

43. Li, Jianxiong, Ping Yu, Shuang Zhang, and Na Liu, "Electrically-controlled digital metasurface device for light projection displays," Nature Communications, Vol. 11, No. 1, 3574, 2020.
doi:10.1038/s41467-020-17390-3

44. Zhu, Shuangqi, Zhentao Xu, Hao Zhang, Keyang Yang, Ning Wang, Haitao Liu, Yongtian Wang, Jun Xia, and Lingling Huang, "Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption," Optics Express, Vol. 29, No. 6, 9553-9564, 2021.
doi:10.1364/oe.419914

45. Kaissner, Robin, Jianxiong Li, Wenzheng Lu, Xin Li, Frank Neubrech, Jianfang Wang, and Na Liu, "Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies," Science Advances, Vol. 7, No. 19, eabd9450, 2021.
doi:10.1126/sciadv.abd9450

46. Liu, Xingbo, Qiu Wang, Xueqian Zhang, Hua Li, Quan Xu, Yuehong Xu, Xieyu Chen, Shaoxian Li, Meng Liu, Zhen Tian, et al., "Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface," Advanced Optical Materials, Vol. 7, No. 12, 1900175, 2019.
doi:10.1002/adom.201900175

47. Zhang, Fei, Xin Xie, Mingbo Pu, Yinghui Guo, Xiaoliang Ma, Xiong Li, Jun Luo, Qiong He, Honglin Yu, and Xiangang Luo, "Multistate switching of photonic angular momentum coupling in phase-change metadevices," Advanced Materials, Vol. 32, No. 39, 1908194, 2020.
doi:10.1002/adma.201908194

48. Li, Jianxiong, Yiqin Chen, Yueqiang Hu, Huigao Duan, and Na Liu, "Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display," ACS Nano, Vol. 14, No. 7, 7892-7898, 2020.
doi:10.1021/acsnano.0c01469

49. Dong, Liang, Yang Li, Jinxu Wei, and Lei Zhu, "Four-channel holographic metasurface based on frequency-angle multiplexing," Physica Scripta, Vol. 99, No. 5, 055524, 2024.
doi:10.1088/1402-4896/ad36f0

50. Kamali, Seyedeh Mahsa, Ehsan Arbabi, Amir Arbabi, Yu Horie, MohammadSadegh Faraji-Dana, and Andrei Faraon, "Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles," Physical Review X, Vol. 7, No. 4, 041056, 2017.
doi:10.1103/physrevx.7.041056

51. Jang, Junhyeok, Gun-Yeal Lee, Jangwoon Sung, and Byoungho Lee, "Independent multichannel wavefront modulation for angle multiplexed meta-holograms," Advanced Optical Materials, Vol. 9, No. 17, 2100678, 2021.
doi:10.1002/adom.202100678

52. Bao, Yanjun, Ying Yu, Haofei Xu, Qiaoling Lin, Yin Wang, Juntao Li, Zhang-Kai Zhou, and Xue-Hua Wang, "Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding," Advanced Functional Materials, Vol. 28, No. 51, 1805306, 2018.
doi:10.1002/adfm.201805306

53. Wang, Enliang, Jiebin Niu, Yonghao Liang, HaiLiang Li, Yilei Hua, Lina Shi, and Changqing Xie, "Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields," Advanced Optical Materials, Vol. 8, No. 6, 1901674, 2020.
doi:10.1002/adom.201901674