Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics
Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
HomepageChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
China
Homepage1. Nagatsuma, T., M. Shinagawa, N. Sabri, A. Sasaki, Y. Royter, and A. Hirata, "1.55-μm photonic systems for microwave and millimeter-wave measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 10, 1831-1839, 2001.
doi:10.1109/22.954796
2. Pfeiffer, Adrian N., Claudio Cirelli, Mathias Smolarski, Darko Dimitrovski, Mahmoud Abu-Samha, Lars Bojer Madsen, and Ursula Keller, "Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms," Nature Physics, Vol. 8, No. 1, 76-80, 2012.
doi:10.1038/nphys2125
3. Leone, Stephen R., C. William McCurdy, Joachim Burgdörfer, Lorenz S. Cederbaum, Zenghu Chang, Nirit Dudovich, Johannes Feist, Chris H. Greene, Misha Ivanov, Reinhard Kienberger, et al., "What will it take to observe processes in `real time'?," Nature Photonics, Vol. 8, No. 3, 162-166, 2014.
doi:10.1038/nphoton.2014.48
4. Cirelli, Claudio, Carlos Marante, Sebastian Heuser, C. L. M. Petersson, Álvaro Jiménez Galán, Luca Argenti, Shiyang Zhong, David Busto, Marcus Isinger, Saikat Nandi, et al., "Anisotropic photoemission time delays close to a Fano resonance," Nature Communications, Vol. 9, No. 1, 955, 2018.
doi:10.1038/s41467-018-03009-1
5. Liu, J., Z. Lu, S. Raymond, P. J. Poole, P. J. Barrios, G. Pakulski, D. Poitras, G. Xiao, and Z. Zhang, "Uniform 90-channel multiwavelength InAs/InGaAsP quantum dot laser," Electronics Letters, Vol. 43, No. 8, 458-460, 2007.
doi:10.1049/el:20070594
6. Eckle, Petrissa, Mathias Smolarski, Philip Schlup, Jens Biegert, André Staudte, Markus Schöffler, Harm G. Muller, Reinhard Dörner, and Ursula Keller, "Attosecond angular streaking," Nature Physics, Vol. 4, No. 7, 565-570, 2008.
doi:10.1038/nphys982
7. Juodawlkis, P. W., J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 10, 1840-1853, 2001.
doi:10.1109/22.954797
8. Moscoso-Mártir, Alvaro, Ali Tabatabaei-Mashayekh, Juliana Müller, Jovana Nojić, Rony Setter, Mad Nielsen, Anna Sandomirsky, Sylvie Rockman, Elad Mentovich, Florian Merget, Alexandre Garreau, François Lelarge, and Jeremy Witzens, "8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser," Optics Express, Vol. 26, No. 19, 25446-25459, 2018.
doi:10.1364/oe.26.025446
9. Müller, Juliana, Johannes Hauck, Bin Shen, Sebastian Romero-García, Elmira Islamova, Saeed Sharif Azadeh, Siddharth Joshi, Nicolas Chimot, Alvaro Moscoso-Mártir, Florian Merget, François Lelarge, and Jeremy Witzens, "Silicon photonics WDM transmitter with single section semiconductor mode-locked laser," Advanced Optical Technologies, Vol. 4, No. 2, 119-145, 2015.
doi:10.1515/aot-2015-0003
10. Xu, Zhongxiao, Yuelong Wu, Long Tian, Lirong Chen, Zhiying Zhang, Zhihui Yan, Shujing Li, Hai Wang, Changde Xie, and Kunchi Peng, "Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy," Physical Review Letters, Vol. 111, No. 24, 240503, 2013.
doi:10.1103/physrevlett.111.240503
11. Zhang, Zheyuan, Xiangnan Sun, Pengtao Yuan, Shoko Yokokawa, Yongjia Zheng, Hongbo Jiang, Lei Jin, Anton S. Anisimov, Esko I. Kauppinen, Rong Xiang, Shigeo Maruyama, Shinji Yamashita, and Sze Y. Set, "SWCNT@BNNT with 1D van der Waals heterostructure with a high optical damage threshold for laser mode-locking," Journal of Lightwave Technology, Vol. 39, No. 18, 5875-5883, 2021.
doi:10.1109/jlt.2021.3092522
12. Pushkin, A. V., E. A. Migal, S. Tokita, Yu V. Korostelin, and F. V. Potemkin, "Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm," Optics Letters, Vol. 45, No. 3, 738-741, 2020.
doi:10.1364/ol.384300
13. Hou, Lianping, Yongguang Huang, Yihui Liu, Ruikang Zhang, Jiankun Wang, Baojun Wang, Hongliang Zhu, Bin Hou, Bocang Qiu, and John H. Marsh, "Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser," Optics Letters, Vol. 45, No. 10, 2760-2763, 2020.
doi:10.1364/ol.392191
14. Suhara, T., Semiconductor Laser Fundamentals, CRC Press, 2004.
doi:10.1201/9780203020470
15. Kolner, B. and D. Bloom, "Electrooptic sampling in GaAs integrated circuits," IEEE Journal of Quantum Electronics, Vol. 22, No. 1, 79-93, 1986.
doi:10.1109/jqe.1986.1072877
16. Glezer, E. N. and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Applied Physics Letters, Vol. 71, No. 7, 882-884, 1997.
doi:10.1063/1.119677
17. Zhang, Jinwei, Qing Wang, Jingjie Hao, Heyan Liu, Jiyong Yao, Zhuang Li, Jie Liu, and Ka Fai Mak, "Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with BGSe crystals," Optics Express, Vol. 28, No. 25, 37903-37909, 2020.
doi:10.1364/oe.411664
18. Kozub, John A., Jin-H. Shen, Karen M. Joos, Ratna Prasad, and M. Shane Hutson, "Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser," Journal of Biomedical Optics, Vol. 20, No. 10, 105004, 2015.
doi:10.1117/1.jbo.20.10.105004
19. Russ, Heloisa Helena Abil, Regina Cele Silveira Seixas, Heloísa Andrade Maestrini, Marcos Balbino, Thatiana Almeida Pereira Fernandes, Núbia Vanessa dos Anjos Lima, Nara Lídia Vieira Lopes, and Taurino dos Santos Rodrigues Neto, "Comparison of safety and effectiveness of micropulse transscleral cyclophotocoagulation and ``slow cook'' diode laser transscleral cyclophotocoagulation in patients with refractory open-angle glaucoma," Arquivos Brasileiros De Oftalmologia, Vol. 88, No. 1, e2023-0103, 2025.
doi:10.5935/0004-2749.2023-0103
20. Diddams, Scott A., Kerry Vahala, and Thomas Udem, "Optical frequency combs: Coherently uniting the electromagnetic spectrum," Science, Vol. 369, No. 6501, eaay3676, 2020.
doi:10.1126/science.aay3676
21. Chang, Lin, Songtao Liu, and John E. Bowers, "Integrated optical frequency comb technologies," Nature Photonics, Vol. 16, No. 2, 95-108, 2022.
doi:10.1038/s41566-021-00945-1
22. Chang, Bing, Teng Tan, Junting Du, Xinyue He, Yupei Liang, Zihan Liu, Chun Wang, Handing Xia, Zhaohui Wu, Jindong Wang, et al., "Dispersive Fourier transform based dual-comb ranging," Nature Communications, Vol. 15, No. 1, 4990, 2024.
doi:10.1038/s41467-024-49438-z
23. Puts, Lukas, Daan Lenstra, Kevin Williams, and Weiming Yao, "Measurements and modeling of a monolithically integrated self-spiking two-section laser in InP," IEEE Journal of Quantum Electronics, Vol. 59, No. 3, 1-7, 2023.
doi:10.1109/jqe.2022.3224786
24. Yuan, Z. L., M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, "Robust random number generation using steady-state emission of gain-switched laser diodes," Applied Physics Letters, Vol. 104, No. 26, 261112, 2014.
doi:10.1063/1.4886761
25. Ludlow, Andrew D., Martin M. Boyd, Jun Ye, E. Peik, and P. O. Schmidt, "Optical atomic clocks," Reviews of Modern Physics, Vol. 87, No. 2, 637-701, 2015.
doi:10.1103/revmodphys.87.637
26. Riehle, Fritz, "Optical clock networks," Nature Photonics, Vol. 11, No. 1, 25-31, 2017.
doi:10.1038/nphoton.2016.235
27. Marandi, Alireza, Zhe Wang, Kenta Takata, Robert L. Byer, and Yoshihisa Yamamoto, "Network of time-multiplexed optical parametric oscillators as a coherent Ising machine," Nature Photonics, Vol. 8, No. 12, 937-942, 2014.
doi:10.1038/nphoton.2014.249
28. Bauer, Carolin P., Zofia A. Bejm, Michelle K. Bollier, Justinas Pupeikis, Benjamin Willenberg, Ursula Keller, and Christopher R. Phillips, "High-sensitivity dual-comb and cross-comb spectroscopy across the infrared using a widely tunable and free-running optical parametric oscillator," Nature Communications, Vol. 15, No. 1, 7211, 2024.
doi:10.1038/s41467-024-51392-9
29. Wang, Hao, Jianqi Hu, Andrea Morandi, Alfonso Nardi, Fei Xia, Xuanchen Li, Romolo Savo, Qiang Liu, Rachel Grange, and Sylvain Gigan, "Photonics breakthroughs 2024: Nonlinear photonic computing at scale," IEEE Photonics Journal, Vol. 17, No. 2, 1-4, 2025.
doi:10.1109/jphot.2025.3547948
30. Cheng, Yuan, Jianing Zhang, Tiankuang Zhou, Yuyan Wang, Zhihao Xu, Xiaoyun Yuan, and Lu Fang, "Photonic neuromorphic architecture for tens-of-task lifelong learning," Light: Science & Applications, Vol. 13, No. 1, 56, 2024.
doi:10.1038/s41377-024-01395-4
31. Hellwarth, Robert and Paul Christensen, "Nonlinear optical microscope using second harmonic generation," Applied Optics, Vol. 14, No. 2, 247-248, 1975.
doi:10.1364/AO.14.000247
32. Lee, Sung-Ho, Bumjoon Jang, Dong Hee Kim, Chang Hyun Park, Gyuri Bae, Seung Woo Park, and Seung-Han Park, "Ultrafast video imaging of cell division from zebrafish egg using multimodal microscopic system," International Conference on Nano-Bio Sensing, Imaging, and Spectroscopy, 2017, Vol. 10324, 49-52, Jeju, Korea, Jul. 2017.
doi:10.1117/12.2270692
33. Sugioka, Koji and Ya Cheng, "Ultrafast lasers-reliable tools for advanced materials processing," Light: Science & Applications, Vol. 3, No. 4, e149, 2014.
doi:10.1038/lsa.2014.30
34. Malinauskas, Mangirdas, Albertas Žukauskas, Satoshi Hasegawa, Yoshio Hayasaki, Vygantas Mizeikis, Ričardas Buividas, and Saulius Juodkazis, "Ultrafast laser processing of materials: From science to industry," Light: Science & Applications, Vol. 5, No. 8, e16133, 2016.
doi:10.1038/lsa.2016.133
35. Chichkov, B. N., C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics A, Vol. 63, No. 2, 109-115, 1996.
doi:10.1007/s003390050359
36. Trocha, Philipp, Juned Nassir Kemal, Quentin Gaimard, Guy Aubin, François Lelarge, Abderrahim Ramdane, Wolfgang Freude, Sebastian Randel, and Christian Koos, "Ultra-fast optical ranging using quantum-dash mode-locked laser diodes," Scientific Reports, Vol. 12, No. 1, 1076, 2022.
doi:10.1038/s41598-021-04368-4
37. Chan, Jeff, Chin-I Tang, Xianyue Deng, Ted Lee, and Yuzuru Takashima, "Wide field of view real-time flash DMD-lidar with 2D multi-pixel photon counter," Emerging Digital Micromirror Device Based Systems and Applications XV, Vol. 12435, 86-87, San Francisco, California, United States, Mar. 2023.
doi:10.1117/12.2647989
38. Geng, Renfang, Zhibo Wu, Yong Huang, Zhien Cheng, Rongzong Yu, Kai Tang, Haifeng Zhang, Wendong Meng, Huarong Deng, Mingliang Long, Si Qin, and Zhongping Zhang, "A complete analysis of the link uncertainty budget for pulsed laser time transfer on China space station," Advances in Space Research, Vol. 73, No. 5, 2548-2566, 2024.
doi:10.1016/j.asr.2023.12.022
39. Geng, Renfang, Zhibo Wu, Yong Huang, Wendong Meng, Kai Tang, Haifeng Zhang, Tong Liu, Wenbin Wang, and Zhongping Zhang, "Calculation model and error analysis of lunar laser time-frequency transfer based on general relativity," Chinese Journal of Lasers, Vol. 52, No. 2, 0204003, 2025.
doi:10.3788/CJL240878
40. Hayashi, I., M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature," Applied Physics Letters, Vol. 17, No. 3, 109-111, 1970.
doi:10.1063/1.1653326
41. Gingrich, H. S., D. R. Chumney, S.-Z. Sun, S. D. Hersee, L. F. Lester, and S. R. J. Brueck, "Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells," IEEE Photonics Technology Letters, Vol. 9, No. 2, 155-157, 1997.
doi:10.1109/68.553070
42. Zhu, Xiang, D. T. Cassidy, M. J. Hamp, D. A. Thompson, B. J. Robinson, Q. C. Zhao, and M. Davies, "1.4-μm InGaAsP-InP strained multiple-quantum-well laser for broad-wavelength tunability," IEEE Photonics Technology Letters, Vol. 9, No. 9, 1202-1204, 1997.
doi:10.1109/68.618477
43. Nikolaev, V. V. and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technology Letters, Vol. 16, No. 1, 24-26, 2004.
doi:10.1109/lpt.2003.819399
44. Karin, J. R., R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, "Ultrafast dynamics in field-enhanced saturable absorbers," Applied Physics Letters, Vol. 64, No. 6, 676-678, 1994.
doi:10.1063/1.111058
45. Mao, Youxin, Guocheng Liu, Khan Zeb, Zhenguo Lu, Jiaren Liu, Philip J. Poole, Chun-Ying Song, and Pedro Barrios, "Ultralow noise and timing jitter semiconductor quantum-dot passively mode-locked laser for Terabit/s optical networks," Photonics, Vol. 9, No. 10, 695, 2022.
doi:10.3390/photonics9100695
46. Liu, Songtao, Xinru Wu, Justin Norman, Daehwan Jung, Mario Dumont, Chen Shang, Yating Wan, M. J. Kennedy, Bozhang Dong, Dominik Auth, et al., "High-performance mode-locked lasers on silicon," Physics and Simulation of Optoelectronic Devices XXVIII, Vol. 11274, 195-202, San Francisco, California, United States, Mar. 2020.
doi:10.1117/12.2552224
47. Norman, Justin C., Daehwan Jung, Zeyu Zhang, Yating Wan, Songtao Liu, Chen Shang, Robert W. Herrick, Weng W. Chow, Arthur C. Gossard, and John E. Bowers, "A review of high-performance quantum dot lasers on silicon," IEEE Journal of Quantum Electronics, Vol. 55, No. 2, 1-11, 2019.
doi:10.1109/jqe.2019.2901508
48. Cao, Victoria, Jae-Seong Park, Mingchu Tang, Taojie Zhou, Alwyn Seeds, Siming Chen, and Huiyun Liu, "Recent progress of quantum dot lasers monolithically integrated on Si platform," Frontiers in Physics, Vol. 10, 839953, 2022.
doi:10.3389/fphy.2022.839953
49. Kurczveil, Geza, M. Ashkan Seyedi, Di Liang, Marco Fiorentino, and Raymond G. Beausoleil, "Error-free operation in a hybrid-silicon quantum dot comb laser," IEEE Photonics Technology Letters, Vol. 30, No. 1, 71-74, 2018.
doi:10.1109/LPT.2017.2775145
50. Dong, Bozhang, Heming Huang, Jianan Duan, Geza Kurczveil, Di Liang, Raymond G. Beausoleil, and Frédéric Grillot, "Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection," Optics Letters, Vol. 44, No. 23, 5755-5758, 2019.
doi:10.1364/ol.44.005755
51. Zhou, Q., J. Liu, Y. Gu, F. Fan, Y. Wang, and B. Xu, "Gain-switched semiconductor pulsed laser for quantum secure communication," Chinese Journal of Lasers, Vol. 43, No. 5, 502005, 2016.
doi:10.3788/cjl201643.0502005
52. Peng, Boyu, Chenzhi Yuan, Ruiming Zhang, Si Shen, Zichang Zhang, Jiarui Li, Yi Lin, Guangwei Deng, You Wang, Haizhi Song, and Qiang Zhou, "Progress in gain-switched semiconductor lasers for quantum communication," Acta Optica Sinica, Vol. 42, No. 3, 0327007, 2022.
doi:10.3788/AOS202242.0327007
53. Zhou, B., Principle of Laser, 7th Edition, National Defense Industry Press, 2014.
54. Javaloyes, Julien and Salvador Balle, "Mode-locking in semiconductor Fabry-Pérot lasers," IEEE Journal of Quantum Electronics, Vol. 46, No. 7, 1023-1030, 2010.
doi:10.1109/jqe.2010.2042792
55. Tsao, Jeffrey Y., "Generation of 1.6 ns ruby laser pulses by passive Q-switching," Optics Communications, Vol. 60, No. 4, 225-228, 1986.
doi:10.1016/0030-4018(86)90430-x
56. Kastner, M., H. Wenzel, J. Schwarz, A. Knigge, and G Tränkle, "Theoretical investigation of anti-index guiding inactively Q-switched two-section diode lasers," Semiconductor Science and Technology, Vol. 34, No. 3, 035019, 2019.
doi:10.1088/1361-6641/ab0148
57. Keller, Ursula, "Recent developments in compact ultrafast lasers," Nature, Vol. 424, No. 6950, 831-838, 2003.
doi:10.1038/nature01938
58. Paschotta, R. and U. Keller, "Passive mode locking with slow saturable absorbers," Applied Physics B, Vol. 73, No. 7, 653-662, 2001.
doi:10.1007/s003400100726
59. Janjua, B., T. J. Stirling, M. L. Iu, Z. Yan, and Amr S. Helmy, "High peak power ultrashort pulsed passively Q-switched mode-locked bragg laser diode," IEEE Photonics Technology Letters, Vol. 35, No. 17, 943-946, 2023.
doi:10.1109/lpt.2023.3289048
60. Tourrenc, J. P., S. O'Donoghue, M. T. Todaro, S. P. Hegarty, M. B. Flynn, G. Huyet, J. G. McInerney, L. O'Faolain, and T. F. Krauss, "Cross-correlation timing jitter measurement of high power passively mode-locked two-section quantum-dot lasers," IEEE Photonics Technology Letters, Vol. 18, No. 21, 2317-2319, 2006.
doi:10.1109/lpt.2006.885218
61. Strain, M., M. Zanola, G. Mezosi, and M. Sorel, "Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser," Optics Letters, Vol. 37, No. 22, 4732-4734, 2012.
doi:10.1364/ol.37.004732
62. Li, You and Javier Ibanez-Guzman, "Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems," IEEE Signal Processing Magazine, Vol. 37, No. 4, 50-61, 2020.
doi:10.1109/msp.2020.2973615
63. Thompson, M. G., A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, "Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers," Applied Physics Letters, Vol. 88, No. 13, 133119, 2006.
doi:10.1063/1.2186110
64. Balzer, J. C., T. Schlauch, Th. Hoffmann, A. Klehr, G. Erbert, and M. R. Hofmann, "Modelocked semiconductor laser system with pulse picking for variable repetition rate," Electronics Letters, Vol. 47, No. 25, 1387-1388, 2011.
doi:10.1049/el.2011.3378
65. Koda, Rintaro, Tomoyuki Oki, Shunsuke Kono, Takao Miyajima, Hideki Watanabe, Masaru Kuramoto, Masao Ikeda, and Hiroyuki Yokoyama, "300 W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier," Applied Physics Express, Vol. 5, No. 2, 022702, 2012.
doi:10.1143/apex.5.022702
66. Schlauch, T., M. Li, M. R. Hofmann, A. Klehr, G. Erbert, and G. Tränkle, "High peak power femtosecond pulses from modelocked semiconductor laser in external cavity," Electronics Letters, Vol. 44, No. 11, 678-679, 2008.
67. Kim, Byoung-Sung, Younchul Chung, and Sen-Ho Kim, "Dynamic analysis of mode-locked sampled-grating distributed Bragg reflector laser diodes," IEEE Journal of Quantum Electronics, Vol. 35, No. 11, 1623-1629, 1999.
doi:10.1109/3.798085
68. Kaiser, R., B. Huttl, C. Kindel, H. Stolpe, H. Heidrich, S. Fidorra, W. Rehbein, S. Ritter, and G. Jacumeit, "Effects of on-chip wavelength tuning on pulse and noise characteristics of monolithic mode-locked 40 GHz SIPBH DBR lasers," 2004 IEEE 19th International Semiconductor Laser Conference, 2004, Conference Digest, 95-96, Matsue, Japan, Sep. 2004.
doi:10.1109/ISLC.2004.1382772
69. Yvind, K., D. Larsson, L. J. Christiansen, C.Angelo, L. K. Oxenlwe, J. Mrk, D. Birkedal, J. M. Hvam, and J. Hanberg, "Low-jitter and high-power 40-GHz all-active mode-locked lasers," IEEE Photonics Technology Letters, Vol. 16, No. 4, 975-977, 2004.
doi:10.1109/lpt.2004.824634
70. Ogura, I., H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Optical and Quantum Electronics, Vol. 33, No. 7, 709-725, 2001.
doi:10.1023/a:1017511214111
71. Lanz, Brigitte, Boris S. Ryvkin, Eugene A. Avrutin, and Juha T. Kostamovaara, "Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes," Optics Express, Vol. 21, No. 24, 29780-29791, 2013.
doi:10.1364/oe.21.029780
72. Huikari, Jaakko M. T., Eugene A. Avrutin, Boris S. Ryvkin, Jan J. Nissinen, and Juha Tapio Kostamovaara, "High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, No. 6, 189-194, 2015.
doi:10.1109/jstqe.2015.2416342
73. Golovin, Vyacheslav S., Sergey O. Slipchenko, Aleksandr A. Podoskin, Alena E. Kazakova, and Nikita A. Pikhtin, "Systematic optimization of QW semiconductor laser design for subnanosecond pulse generation by gain switching," Journal of Lightwave Technology, Vol. 40, No. 13, 4321-4325, 2022.
doi:10.1109/jlt.2022.3159574
74. Cao, Fuyi, Dongxin Jiang, Yuejun Liu, Yunpeng Tian, Xu Ran, Yisu Long, Takashi Ito, Xiaobo Hu, Guoen Weng, Hidefumi Akiyama, and Shaoqiang Chen, "Subnanosecond Marx generators for picosecond gain-switched laser diodes," IEEE Photonics Journal, Vol. 16, No. 1, 1-8, 2024.
doi:10.1109/jphot.2023.3342450
75. Chen, Shaoqiang, Masahiro Yoshita, Takashi Ito, Toshimitsu Mochizuki, Hidefumi Akiyama, and Hiroyuki Yokoyama, "Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression," Optics Express, Vol. 21, No. 6, 7570-7576, 2013.
doi:10.1364/oe.21.007570
76. Dogru, Nuran, Hilal S, Duranoglu Tunc, and Ali Mumtaz Al-Dabbagh, "Short pulse generation from gain-switched quantum dot laser," 2021 IEEE Photonics Conference (IPC), 1-2, Vancouver, BC, Canada, Nov. 2021.
doi:10.1109/IPC48725.2021.9592850
77. Nakamura, Takahiro, Takashi Ito, Hidekazu Nakamae, Changsu Kim, Yuji Hazama, Yohei Kobayashi, Ryunosuke Kuroda, and Hidefumi Akiyama, "Direct generation of sub-picosecond pulse via multi-section gain switching," Optics Letters, Vol. 46, No. 6, 1277-1280, 2021.
doi:10.1364/ol.409822
78. Chen, Shaoqiang, Takahiro Nakamura, Takashi Ito, Xumin Bao, Hidekazu Nakamae, Guoen Weng, Xiaobo Hu, Masahiro Yoshita, Hidefumi Akiyama, Jianping Liu, Masao Ikeda, and Hui Yang, "Picosecond tunable gain-switched blue pulses from GaN laser diodes with nanosecond current injections," Optics Express, Vol. 25, No. 12, 13046-13054, 2017.
doi:10.1364/oe.25.013046
79. Chen, Shaoqiang, Masahiro Yoshita, Takashi Ito, Toshimitsu Mochizuki, Hidefumi Akiyama, Hiroyuki Yokoyama, Kenji Kamide, and Tetsuo Ogawa, "Analysis of gain-switching characteristics including strong gain saturation effects in low-dimensional semiconductor lasers," Japanese Journal of Applied Physics, Vol. 51, No. 9R, 098001, 2012.
doi:10.1143/jjap.51.098001
80. Ito, Takashi, Hidekazu Nakamae, Yuji Hazama, Takahiro Nakamura, Shaoqiang Chen, Masahiro Yoshita, Changsu Kim, Yohei Kobayashi, and Hidefumi Akiyama, "Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers," Communications Physics, Vol. 1, No. 1, 42, 2018.
doi:10.1038/s42005-018-0045-0
81. Ripper, J. E. and J. C. Dyment, "Internal Q switching in GaAs junction lasers," Applied Physics Letters, Vol. 12, No. 11, 365-367, 1968.
doi:10.1063/1.1651857
82. Ripper, J., "Time delays and Q switching in junction lasers: I --- Theory," IEEE Journal of Quantum Electronics, Vol. 5, No. 8, 391-395, 1969.
doi:10.1109/jqe.1969.1076281
83. Ripper, J. and J. Dyment, "Time delays and Q switching in junction lasers: II --- Computer calculations and comparison with experiments," IEEE Journal of Quantum Electronics, Vol. 5, No. 8, 396-403, 1969.
doi:10.1109/jqe.1969.1076284
84. Tronciu, V., H. Wenzel, and A. Knigge, "Theoretical studies of the generation of picoseconds pulses with two-section blue-violet semiconductor lasers," Semiconductor Science and Technology, Vol. 35, No. 4, 045029, 2020.
doi:10.1088/1361-6641/ab74f0
85. López-Querol, Pablo, Clara Quevedo-Galán, Antonio Pérez-Serrano, José Manuel G. Tijero, and Ignacio Esquivias, "Generation of optical frequency combs by Q-switching integrated multi-section semiconductor lasers," Optics Express, Vol. 31, No. 20, 33475-33485, 2023.
doi:10.1364/oe.498426
86. Ribeiro, Ana Filipa, Adam F. Forrest, and Maria Ana Cataluna, "On-demand Q-switching regime in optically injected dual-section quantum-dot laser," IEEE Photonics Journal, Vol. 14, No. 3, 1-5, 2022.
doi:10.1109/jphot.2022.3171087
87. Chen, Huibin, Zhenyu You, and Kaize Xu, "Tunable high-repetition-rate pulse generation via passive Q-switched semiconductor laser," Optics & Laser Technology, Vol. 181, 111703, 2025.
doi:10.1016/j.optlastec.2024.111703
88. Paoli, T. L. and J. E. Ripper, "Direct modulation of semiconductor lasers," Proceedings of the IEEE, Vol. 58, No. 10, 1457-1465, 1970.
doi:10.1109/proc.1970.7971
89. Gloge, D. and R. Roldan, "Investigation of low power laser signals with picosecond resolution," Applied Physics Letters, Vol. 14, No. 1, 3-4, 1969.
doi:10.1063/1.1652646
90. Melngailis, I. and R. H. Rediker, "Magnetically tunable CW InAs diode maser," Applied Physics Letters, Vol. 2, No. 11, 202-204, 1963.
doi:10.1063/1.1753734
91. Avrutin, E. A., J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: Constructions, experiments, models and applications," IEE Proceedings --- Optoelectronics, Vol. 147, No. 4, 251-278, 2000.
doi:10.1049/ip-opt:20000282
92. Marsh, John H. and Lianping Hou, "Mode-locked laser diodes and their monolithic integration," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 6, 1-11, 2017.
doi:10.1109/jstqe.2017.2693020
93. Lu, Z. G., J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, "312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser," Optics Express, Vol. 16, No. 14, 10835-10840, 2008.
doi:10.1364/oe.16.016835
94. Qiao, Zhongliang, Xiang Li, Jia Xu Brian Sia, Wanjun Wang, Hong Wang, Zaijin Li, Zhibin Zhao, Lin Li, Xin Gao, Baoxue Bo, Yi Qu, Guojin Liu, and Chongyang Liu, "Modal gain characteristics of a two-section InGaAs/GaAs double quantum well passively mode-locked laser with asymmetric waveguide," Scientific Reports, Vol. 12, No. 1, 5010, 2022.
doi:10.1038/s41598-022-09136-6
95. Rafailov, E. U., M. A. Cataluna, and W. Sibbett, "Mode-locked quantum-dot lasers," Nature Photonics, Vol. 1, No. 7, 395-401, 2007.
doi:10.1038/nphoton.2007.120
96. Thompson, M. G., C. Marinelli, Y. Chu, R. L. Sellin, R. V. Penty, L. H. White, M. van der Poel, D. Birkedal, J. Hvam, V. M. Ustinov, M. Lammlin, and D. Bimberg, "Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers," 2004 IEEE 19th International Semiconductor Laser Conference, 2004, Conference Digest, 53-54, Matsue, Japan, Feb. 2004.
97. Akahane, Kouichi, Atsushi Matsumoto, Toshimasa Umezawa, and Naokatsu Yamamoto, "High-frequency short-pulse generation with a highly stacked InAs quantum dot mode-locked laser diode," Japanese Journal of Applied Physics, Vol. 60, No. SB, SBBH02, 2021.
doi:10.35848/1347-4065/abd2a1
98. Yadav, Amit, Nikolai B. Chichkov, Eugene A. Avrutin, Andrei Gorodetsky, and Edik U. Rafailov, "Edge emitting mode-locked quantum dot lasers," Progress in Quantum Electronics, Vol. 87, 100451, 2023.
doi:10.1016/j.pquantelec.2022.100451
99. Sieber, Oliver D., Martin Hoffmann, Valentin J. Wittwer, Mario Mangold, Matthias Golling, Bauke W. Tilma, Thomas Südmeyer, and Ursula Keller, "Experimentally verified pulse formation model for high-power femtosecond VECSELs," Applied Physics B, Vol. 113, No. 1, 133-145, 2013.
doi:10.1007/s00340-013-5449-7
100. Tilma, Bauke W., Mario Mangold, Christian A. Zaugg, Sandro M. Link, Dominik Waldburger, Alexander Klenner, Aline S. Mayer, Emilio Gini, Matthias Golling, and Ursula Keller, "Recent advances in ultrafast semiconductor disk lasers," Light: Science & Applications, Vol. 4, No. 7, e310, 2015.
doi:10.1038/lsa.2015.83
101. Konyukhov, A. I. and Yu. A. Morozov, "Mode-locking and transverse mode dynamics in vertical external cavity surface-emitting lasers," 2018 International Conference Laser Optics (ICLO), 171, St. Petersburg, Russia, Jun. 2018.
doi:10.1109/LO.2018.8435606
102. Hou, Lianping, Piotr Stolarz, J. Javaloyes, Richard P. Green, Charlie N. Ironside, Marc Sorel, and A. Catrina Bryce, "Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked algainas-InP 1.55-μm strained quantum-well laser," IEEE Photonics Technology Letters, Vol. 21, No. 23, 1731-1733, 2009.
doi:10.1109/LPT.2009.2031088
103. Moskalenko, Valentina, Sylwester Latkowski, Saeed Tahvili, Tjibbe de Vries, Meint Smit, and Erwin Bente, "Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser," Optics Express, Vol. 22, No. 23, 28865-28874, 2014.
doi:10.1364/oe.22.028865
104. Zhao, Pengchao, Anjin Liu, and Wanhua Zheng, "80 GHz AlGaInAs/InP colliding-pulse mode-locked laser with high pulse power," Applied Physics Express, Vol. 9, No. 12, 122701, 2016.
doi:10.7567/apex.9.122701
105. Lo, Mu-Chieh, Robinson Guzmán, and Guillermo Carpintero, "Femtosecond pulse and terahertz two-tone generation from facet-free multi-segment laser diode in InP-based generic foundry platform," Optics Express, Vol. 26, No. 14, 18386-18398, 2018.
doi:10.1364/oe.26.018386
106. Lo, Mu-Chieh, Robinson Guzmán, and Guillermo Carpintero, "InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate," Optics Letters, Vol. 43, No. 3, 507-510, 2018.
doi:10.1364/ol.43.000507
107. Sun, Defan, Huan Wang, Qiulu Yang, Ruikang Zhang, Lingjuan Zhao, and Dan Lu, "100-GHz 200-fs pulse generation with 1.5-Watt peak power using a colliding-pulse mode-locked laser diode," 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 1-3, Toyama, Japan, Aug. 2022.
doi:10.23919/OECC/PSC53152.2022.9850003
108. Akbar, Jehan, Lianping Hou, Mohsin Haji, Michael J. Strain, Piotr M. Stolarz, John H. Marsh, A. Catrina Bryce, and Anthony E. Kelly, "High peak power (550 mW) 40 GHz mode-locked DBR lasers with integrated optical amplifiers," IEEE Photonic Society 24th Annual Meeting, 755-756, Arlington, VA, USA, Oct. 2011.
doi:10.1109/pho.2011.6110770
109. Javaloyes, J. and S. Balle, "Anticolliding design for monolithic passively mode-locked semiconductor lasers," Optics Letters, Vol. 36, No. 22, 4407-4409, 2011.
doi:10.1364/ol.36.004407
110. Liu, Y., R. Zhang, H. Wang, D. Lu, and L. Zhao, "25-GHz semiconductor mode-locked laser with subpicosecond pulse output in the 1.5-µm band," Acta Photonica Sinica, Vol. 51, 0251211, 2022.
111. Wang, Zhechao, Kasper Van Gasse, Valentina Moskalenko, Sylwester Latkowski, Erwin Bente, Bart Kuyken, and Gunther Roelkens, "A III-V-on-Si ultra-dense comb laser," Light: Science & Applications, Vol. 6, No. 5, e16260, 2017.
doi:10.1038/lsa.2016.260
112. Van Gasse, K., S. Uvin, V. Moskalenko, S. Latkowski, G. Roelkens, E. Bente, and B. kuyken, "Recent advances in the photonic integration of mode-locked laser diodes," IEEE Photonics Technology Letters, Vol. 31, No. 23, 1870-1873, 2019.
doi:10.1109/lpt.2019.2945973
113. Moskalenko, Valentina, Jeroen Koelemeij, Kevin Williams, and Erwin Bente, "Study of extra wide coherent optical combs generated by a QW-based integrated passively mode-locked ring laser," Optics Letters, Vol. 42, No. 7, 1428-1431, 2017.
doi:10.1364/ol.42.001428
114. Vu, Thi Nghiem, Andreas Klehr, Bernd Sumpf, Hans Wenzel, Götz Erbert, and Günther Tränkle, "Wavelength stabilized ns-MOPA diode laser system with 16 W peak power and a spectral line width below 10 pm," Semiconductor Science and Technology, Vol. 29, No. 3, 035012, 2014.
doi:10.1088/0268-1242/29/3/035012
115. Guo, X., A. H. Quarterman, A. Wonfor, R. V. Penty, and I. H. White, "Monolithically integrated tunable mode-locked laser diode source with individual pulse selection and post-amplification," Optics Letters, Vol. 41, No. 20, 4835-4838, 2016.
doi:10.1364/ol.41.004835
116. Liu, S., D. Lu, R. Zhang, L. Zhao, W. Wang, R. Broeke, and C. Ji, "Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG," Optics Express, Vol. 24, No. 9, 9734-9740, 2016.
doi:10.1364/oe.24.009734
117. Hou, Lianping, Mohsin Haji, John H. Marsh, and A. Catrina, "Bryce 490 fs pulse generation from a passive C-band AlGaInAs/InP quantum well mode-locked laser," Optics Letters, Vol. 37, No. 5, 773-775, 2012.
doi:10.1364/ol.37.000773
118. Camacho, F., E. A. Avrutin, P. Cusumano, A. Saher Helmy, A. C. Bryce, and J. H. Marsh, "Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum-well intermixing," IEEE Photonics Technology Letters, Vol. 9, No. 9, 1208-1210, 1997.
doi:10.1109/68.618479
119. Lo, Mu-Chieh, Robinson Guzmán, Muhsin Ali, Rui Santos, Luc Augustin, and Guillermo Carpintero, "1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser," Optics Letters, Vol. 42, No. 19, 3872-3875, 2017.
doi:10.1364/ol.42.003872
120. Nikitichev, D. I., Y. Ding, M. A. Cataluna, E. U. Rafailov, L. Drzewietzki, S. Breuer, W. Elsaesser, M. Rossetti, P. Bardella, T. Xu, et al., "High peak power and sub-picosecond Fourier-limited pulse generation from passively mode-locked monolithic two-section gain-guided tapered InGaAs quantum-dot lasers," Laser Physics, Vol. 22, No. 4, 715-724, 2012.
doi:10.1134/s1054660x12040147
121. Meinecke, Stefan, Lukas Drzewietzki, Christoph Weber, Benjamin Lingnau, Michel Krakowski, Igor Krestnikov, Kathy Lüdge, and Stefan Breuer, "492 fs short optical pulse generation with 9.2 W peak power by a monolithic edge-emitting quantum dot laser," 2018 IEEE International Semiconductor Laser Conference (ISLC), 1-2, Santa Fe, NM, USA, Sep. 2018.
doi:10.1109/ISLC.2018.8516168
122. Latkowski, Sylwester, Valentina Moskalenko, Saeed Tahvili, Luc Augustin, Meint Smit, Kevin Williams, and Erwin Bente, "Monolithically integrated 2.5 GHz extended cavity mode-locked ring laser with intracavity phase modulators," Optics Letters, Vol. 40, No. 1, 77-80, 2015.
doi:10.1364/ol.40.000077
123. Zhuang, Bihui, Lingling Hua, Jinrong Tian, Lin Mao, Qiang Kan, Lingjuan Zhao, and Yanrong Song, "6 GHz repetition rate and tunable self-mode-locked semiconductor disk laser," IEEE Photonics Technology Letters, Vol. 35, No. 24, 1351-1354, 2023.
doi:10.1109/lpt.2023.3321937
124. Kleemann, Navina, Rejdi Gjoni, Nils Surkamp, Carsten Brenner, Philipp Scherer, Marcel van Delden, Kevin Kolpatzeck, Vladyslav Cherniak, Jan C. Balzer, Martin Moehrle, et al., "Self mode-locking and passive mode-locking in monolithic two-section InGaAsP/InP quantum well laser diode," Optics Express, Vol. 32, No. 25, 44659-44670, 2024.
doi:10.1364/oe.537787
125. Cuyvers, Stijn, Bahawal Haq, Camiel Op de Beeck, Stijn Poelman, Artur Hermans, Zheng Wang, Agnieszka Gocalinska, Emanuele Pelucchi, Brian Corbett, Gunther Roelkens, et al., "Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser," Laser & Photonics Reviews, Vol. 15, No. 8, 2000485, 2021.
doi:10.1002/lpor.202000485
126. Vissers, Ewoud, Stijn Poelman, Hans Wenzel, Heike Christopher, Kasper Van Gasse, Andrea Knigge, and Bart Kuyken, "Hybrid integrated mode-locked laser using a GaAs-based 1064 nm gain chip and a SiN external cavity," Optics Express, Vol. 30, No. 23, 42394-42405, 2022.
doi:10.1364/oe.474671
127. Guo, Qiushi, Benjamin K. Gutierrez, Ryoto Sekine, Robert M. Gray, James A. Williams, Luis Ledezma, Luis Costa, Arkadev Roy, Selina Zhou, Mingchen Liu, et al., "Ultrafast mode-locked laser in nanophotonic lithium niobate," Science, Vol. 382, No. 6671, 708-713, 2023.
doi:10.1126/science.adj5438
128. Billet, Maximilien, Stijn Cuyvers, Stijn Poelman, Artur Hermans, Sandeep Seema Saseendra, Tasuku Nakamura, Shinya Okamoto, Yasuhisa Inada, Kazuya Hisada, Taku Hirasawa, et al., "Heterogeneous tunable III-V-on-silicon-nitride mode-locked laser emitting wide optical spectra," Photonics Research, Vol. 12, No. 3, A21-A27, 2024.
doi:10.1364/prj.507560
129. Agrawal, G. P., "Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers," IEEE Journal of Quantum Electronics, Vol. 27, No. 6, 1843-1849, 1991.
doi:10.1109/3.90014
130. Agrawal, G. P. and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE Journal of Quantum Electronics, Vol. 25, No. 11, 2297-2306, 1989.
doi:10.1109/3.42059
131. Peccianti, M., D. Duchesne, M. Ferrera, I. B. Burgess, Luca Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, "Nonlinear pulse processing in high index glass integrated devices: Pulse compression," Optical Fiber Communication Conference, JWA27, San Diego, USA, 2010.
doi:10.1364/NFOEC.2010.JWA27
132. Akturk, Selcuk, Xun Gu, Erik Zeek, and Rick Trebino, "Pulse-front tilt caused by spatial and temporal chirp," Optics Express, Vol. 12, No. 19, 4399-4410, 2004.
doi:10.1364/opex.12.004399
133. Derickson, D. J., R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, "Short pulse generation using multisegment mode-locked semiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 28, No. 10, 2186-2202, 1992.
doi:10.1109/3.159527
134. Hou, X., Rapid Change: Femtosecond Laser Technology and Ultrafast Process, Hunan Science and Technology Press, 2001.
135. Liao, Chunyan, Junjun Qin, and Manli Hu, "Design of chirped mirrors used for the dispersion compensation in femtosecond lasers," Eighth International Conference on Thin Film Physics and Applications (TFPA13), Vol. 9068, 97-102, Shanghai, China, Dec. 2013.
doi:10.1117/12.2053961
136. Wada, Kenji, Naoaki Kitagawa, Satoru Matsukura, Tetsuya Matsuyama, and Hiromichi Horinaka, "Timing and amplitude jitter in a gain-switched multimode semiconductor laser," Japanese Journal of Applied Physics, Vol. 55, No. 4, 042702, 2016.
doi:10.7567/jjap.55.042702
137. Alloush, M. Ali, Marcel Van Delden, Amer Bassal, Navina Kleemann, Carsten Brenner, Mu-Chieh Lo, Luc Augustin, Robinson Guzmán, Thomas Musch, Guillermo Carpintero, and Martin R. Hofmann, "RF analysis of a sub-GHz InP-based 1550 nm monolithic mode-locked laser chip," IEEE Photonics Technology Letters, Vol. 33, No. 16, 828-831, 2021.
doi:10.1109/lpt.2021.3083096
138. Jaurigue, L. and K. Lüdge, "Influence of noise-induced modulations on the timing stability of passively mode-locked semiconductor laser subject to optical feedback," The ANZIAM Journal, Vol. 67, e22, 2025.
doi:10.1017/s1446181125000136