Institute for Information and Communication Technologies
University of Applied Sciences and Arts Western Switzerland
Switzerland
HomepageInstitute for Information and Communication Technologies
University of Applied Sciences and Arts Western Switzerland
Switzerland
Homepage1. Wang, H., C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, "Fighting against diffraction: Apodization and near field diffraction structures," Laser & Photonics Reviews, Vol. 6, No. 3, 354-392, May 2012.
doi:10.1002/lpor.201100009
2. Mosk, Allard P., Ad Lagendijk, Geoffroy Lerosey, and Mathias Fink, "Controlling waves in space and time for imaging and focusing in complex media," Nature Photonics, Vol. 6, No. 5, 283-292, May 2012.
doi:10.1038/nphoton.2012.88
3. Bertolotti, Jacopo and Ori Katz, "Imaging in complex media," Nature Physics, Vol. 18, No. 9, 1008-1017, Sep. 2022.
doi:10.1038/s41567-022-01723-8
4. Lu, Dylan and Zhaowei Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, No. 1, 1205, Nov. 2012.
doi:10.1038/ncomms2176
5. Glybovski, Stanislav B., Sergei A. Tretyakov, Pavel A. Belov, Yuri S. Kivshar, and Constantin R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, May 2016.
doi:10.1016/j.physrep.2016.04.004
6. You, Jian Wei, Zhihao Lan, Qian Ma, Zhen Gao, Yihao Yang, Fei Gao, Meng Xiao, and Tie Jun Cui, "Topological metasurface: From passive toward active and beyond," Photonics Research, Vol. 11, No. 3, B65-B102, 2023.
doi:10.1364/prj.471905
7. Kumar, Anish and Walter Arnold, "High resolution in non-destructive testing: A review," Journal of Applied Physics, Vol. 132, No. 10, 100901, Sep. 2022.
doi:10.1063/5.0095328
8. Ishimaru, A., Y. Kuga, and M. Bright, Advances in Mathematical Methods for Electromagnetics, 653-672, IET Digital Library, Dec. 2020.
9. Wang, Zhaoyang, Shaoyin He, Reza Razzaghi, Mario Paolone, Yanzhao Xie, and Farhad Rachidi, "A review of time reversal-based methods applied to fault location in power networks," Frontiers in Energy Research, Vol. 10, 1060938, Dec. 2022.
doi:10.3389/fenrg.2022.1060938
10. Yavuz, Mehmet Emre and Fernando L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 1, No. 3, 466-495, 2009.
doi:10.3390/rs1030466
11. Fink, Mathias, "From Loschmidt daemons to time-reversed waves," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, No. 2069, 20150156, Jun. 2016.
doi:10.1098/rsta.2015.0156
12. Lu, Jian-Yu, "Reconstruction methods for super-resolution imaging with PSF modulation," The Journal of the Acoustical Society of America, Vol. 155, No. 3, A54, Mar. 2024.
doi:10.1121/10.0026777
13. Slobozhanyuk, Alexey P., Alexander N. Poddubny, Alexander J. E. Raaijmakers, Cornelis A. T. Van Den Berg, Alexander V. Kozachenko, Irina A. Dubrovina, Irina V. Melchakova, Yuri S. Kivshar, and Pavel A. Belov, "Enhancement of magnetic resonance imaging with metasurfaces," Advanced Materials, Vol. 28, No. 9, 1832-1838, Mar. 2016.
doi:10.1002/adma.201504270
14. Brui, Ekaterina A., Alena V. Shchelokova, Mikhail Zubkov, Irina V. Melchakova, Stanislav B. Glybovski, and Alexey P. Slobozhanyuk, "Adjustable subwavelength metasurface-inspired resonator for magnetic resonance imaging," Physica Status Solidi (A), Vol. 215, No. 5, 1700788, Mar. 2018.
doi:10.1002/pssa.201700788
15. Slobozhanyuk, A. P., I. V. Melchakova, A. V. Kozachenko, D. S. Filonov, C. R. Simovski, and P. A. Belov, "An endoscope based on extremely anisotropic metamaterials for applications in magnetic resonance imaging," Journal of Communications Technology and Electronics, Vol. 59, No. 6, 562-570, Jul. 2014.
doi:10.1134/s1064226914040111
16. Gholipour, Ali, Onur Afacan, Iman Aganj, Benoit Scherrer, Sanjay P. Prabhu, Mustafa Sahin, and Simon K. Warfield, "Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through‐plane partial voluming in MRI," Medical Physics, Vol. 42, No. 12, 6919-6932, Dec. 2015.
doi:10.1118/1.4935149
17. Gao, Kai, Carly M. Donahue, Bradley G. Henderson, and Ryan T. Modrak, "SREMI: Super-resolution electromagnetic imaging with single-channel ground-penetrating radar," Journal of Applied Geophysics, Vol. 205, 104777, Oct. 2022.
doi:10.1016/j.jappgeo.2022.104777
18. Astratov, Vasily N., Yair Ben Sahel, Yonina C. Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, et al. "Roadmap on label-free super-resolution imaging," Laser & Photonics Reviews, Vol. 17, No. 12, 2200029, Dec. 2023.
doi:10.1002/lpor.202200029
19. Carminati, R., R. Pierrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Optics Letters, Vol. 32, No. 21, 3107-3109, 2007.
doi:10.1364/ol.32.003107
20. Feng, Xiao-Yao, Zhizhang Chen, Zhi-Meng Xu, and Juan Li, "Time-reversal source reconstruction with space and time kurtoses," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4766-4773, Jun. 2022.
doi:10.1109/tap.2021.3137384
21. Ghaderi Aram, M., M. Haghparast, M. S. Abrishamian, and A. Mirtaheri, "Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems," Inverse Problems in Science and Engineering, Vol. 24, No. 8, 1347-1363, 2016.
doi:10.1080/17415977.2015.1104308
22. Bal, Guillaume and Leonid Ryzhik, "Time reversal and refocusing in random media," SIAM Journal on Applied Mathematics, Vol. 63, No. 5, 1475-1498, 2003.
doi:10.1137/s0036139902401082
23. Fink, M., "Time-reversal waves and super resolution," Journal of Physics: Conference Series, Vol. 124, No. 1, 012004, 2008.
doi:10.1088/1742-6596/124/1/012004
24. Shi, Gang and Arye Nehorai, "Cramér-Rao bound analysis on multiple scattering in multistatic point-scatterer estimation," IEEE Transactions on Signal Processing, Vol. 55, No. 6, 2840-2850, Jun. 2007.
doi:10.1109/icassp.2006.1661169
25. Ammari, Habib, Bowen Li, and Jun Zou, "Superresolution in recovering embedded electromagnetic sources in high contrast media," SIAM Journal on Imaging Sciences, Vol. 13, No. 3, 1467-1510, 2020.
doi:10.1137/20m1313908
26. Simonetti, F., "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E, Vol. 73, No. 3, 036619, Mar. 2006.
doi:10.1103/physreve.73.036619
27. Ishimaru, Akira, Sermsak Jaruwatanadilok, and Yasuo Kuga, "Imaging through random multiple scattering media using integration of propagation and array signal processing," Waves in Random and Complex Media, Vol. 22, No. 1, 24-39, 2012.
doi:10.1080/17455030.2010.528065
28. Fouque, J. P. and K. Solna, "Time-reversal aperture enhancement," Multiscale Modeling & Simulation, Vol. 1, No. 2, 239-259, 2003.
doi:10.1137/s1540345902414443
29. Ishimaru, Akira, Sermsak Jaruwatanadilok, and Yasuo Kuga, "Time reversal effects in random scattering media on superresolution, shower curtain effects, and backscattering enhancement," Radio Science, Vol. 42, No. 6, 1-9, Dec. 2007.
doi:10.1029/2007rs003645
30. Chan, T., S. Jaruwatanadilok, Y. Kuga, and A. Ishimaru, "Numerical study of the time-reversal effects on super-resolution in random scattering media and comparison with an analytical model," Waves in Random and Complex Media, Vol. 18, No. 4, 627-639, Oct. 2008.
doi:10.1080/17455030802244286
31. Yavuz, M. E. and F. L. Teixeira, "A numerical study of time-reversed UWB electromagnetic waves in continuous random media," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 43-46, 2005.
doi:10.1109/lawp.2005.844117
32. Gomez, Christophe, "Time-reversal superresolution in random waveguides," Multiscale Modeling & Simulation, Vol. 7, No. 3, 1348-1386, 2009.
doi:10.1137/080719492
33. Papanicolaou, G., K. Solna, and L. Ryzhik, "Statistical stability in time reversal," SIAM Journal on Applied Mathematics, Vol. 64, No. 4, 1133-1155, 2004.
doi:10.1137/s0036139902411107
34. Le Boudec, Elias, Nicolas Mora, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Time-reversed electromagnetic fields in anisotropic media," Optics Letters, Vol. 49, No. 7, 1820-1823, 2024.
doi:10.1364/ol.510604
35. De Rosny, Julien and Mathias Fink, "Focusing properties of near-field time reversal," Physical Review A, Vol. 76, No. 6, 065801, Dec. 2007.
doi:10.1103/physreva.76.065801
36. Fannjiang, Albert C., "On time reversal mirrors," Inverse Problems, Vol. 25, No. 9, 095010, Sep. 2009.
doi:10.1088/0266-5611/25/9/095010
37. Jaimes, Manuel A. and Roel Snieder, "Spatio-temporal resolution improvement via weighted time-reversal," Wave Motion, Vol. 106, 102803, Nov. 2021.
doi:10.1016/j.wavemoti.2021.102803
38. Farhi, Asaf, "Three-dimensional-subwavelength field localization, time reversal of sources, and infinite, asymptotic degeneracy in spherical structures," Physical Review A, Vol. 101, No. 6, 063818, Jun. 2020.
doi:10.1103/physreva.101.063818
39. Wang, Zhaoyang, Farhad Rachidi, Mario Paolone, Marcos Rubinstein, and Reza Razzaghi, "A closed time-reversal cavity for electromagnetic waves in transmission line networks," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1621-1630, Mar. 2021.
doi:10.1109/tap.2020.3019348
40. Wang, Zhaoyang, Reza Razzaghi, Mario Paolone, and Farhad Rachidi, "Electromagnetic time reversal similarity characteristics and its application to locating faults in power networks," IEEE Transactions on Power Delivery, Vol. 35, No. 4, 1735-1748, Aug. 2020.
doi:10.1109/tpwrd.2019.2952207
41. He, Shao-Yin, Andrea Cozza, and Yan-Zhao Xie, "On the spatial resolution of fault-location techniques based on full-fault transients," IEEE Transactions on Power Delivery, Vol. 35, No. 3, 1527-1540, Jun. 2020.
doi:10.1109/tpwrd.2019.2949914
42. Bal, Guillaume, Mathias Fink, and Olivier Pinaud, "Time-reversal by time-dependent perturbations," SIAM Journal on Applied Mathematics, Vol. 79, No. 3, 754-780, 2019.
doi:10.1137/18m1216894
43. Bossy, E. and R. Carminati, "Time-domain radiation and absorption by subwavelength sources," Europhysics Letters, Vol. 97, No. 3, 34001, Jan. 2012.
doi:10.1209/0295-5075/97/34001
44. Li, Xiao, Pengqi Li, Ming-Hui Lu, Mathias Fink, and Guancong Ma, "Negative transient flux in the near field of a subwavelength source," Physical Review Applied, Vol. 16, No. 1, L011004, Jul. 2021.
doi:10.1103/physrevapplied.16.l011004
45. De Rosny, J. and M. Fink, "Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink," Physical Review Letters, Vol. 89, No. 12, 124301, Aug. 2002.
doi:10.1103/physrevlett.89.124301
46. Zverev, V. A., "Spatial focusing of a time-reversed pulse," Radiophysics and Quantum Electronics, Vol. 46, No. 7, 517-522, Jul. 2003.
doi:10.1023/b:raqe.0000019867.57582.20
47. Ma, Guancong, Xiying Fan, Fuyin Ma, Julien de Rosny, Ping Sheng, and Mathias Fink, "Towards anti-causal Green's function for three-dimensional sub-diffraction focusing," Nature Physics, Vol. 14, No. 6, 608-612, 2018.
doi:10.1038/s41567-018-0082-3
48. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, Oct. 2000.
doi:10.1103/physrevlett.85.3966
49. Pendry, J. B., "Time reversal and negative refraction," Science, Vol. 322, No. 5898, 71-73, Oct. 2008.
doi:10.1126/science.1162087
50. Liao, Tien-Hao, Po-Chuan Hsieh, and Fu-Chiarng Chen, "Subwavelength target detection using ultrawideband time-reversal techniques with a multilayered dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 835-838, 2009.
doi:10.1109/lawp.2009.2025897
51. Katko, A. R., G. Shvets, and S. A. Cummer, "Phase conjugation metamaterials: Particle design and imaging experiments," J. Opt., Vol. 14, No. 11, 114003, Jul. 2012.
52. Goodman, J. W., Introduction to Fourier Optics, 2nd Ed., 441, McGraw-Hill, New York, 1996.
doi:10.1063/1.3035549
53. Le Boudec, Elias, Hamidreza Karami, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Reconciling super-resolution imaging predictions from the time-reversal cavity and Fourier optics," 2025 URSI AP-RASC, Sydney, Australia, Aug. 2025.
doi:10.46620/ursiaprasc25/pdav3406
54. Massey, G. A., "Microscopy and pattern generation with scanned evanescent waves," Applied Optics, Vol. 23, No. 5, 658-660, 1984.
doi:10.1364/ao.23.000658
55. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100°C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, Feb. 2007.
doi:10.1063/1.2360986
56. Belov, Pavel A., Yang Hao, and Sunil Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Physical Review B, Vol. 73, No. 3, 033108, Jan. 2006.
doi:10.1103/physrevb.73.033108
57. Lemoult, Fabrice, Geoffroy Lerosey, Julien de Rosny, and Mathias Fink, "Resonant metalenses for breaking the diffraction barrier," Physical Review Letters, Vol. 104, No. 20, 203901, May 2010.
doi:10.1103/physrevlett.104.203901
58. Lemoult, Fabrice, Mathias Fink, and Geoffroy Lerosey, "Revisiting the wire medium: An ideal resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 591-613, Oct. 2011.
doi:10.1080/17455030.2011.611836
59. Belov, Pavel A., Yan Zhao, Simon Tse, Pekka Ikonen, Mário G. Silveirinha, Constantin R. Simovski, Sergei Tretyakov, Yang Hao, and Clive Parini, "Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range," Physical Review B, Vol. 77, No. 19, 193108, May 2008.
doi:10.1103/physrevb.77.193108
60. Lemoult, Fabrice, Mathias Fink, and Geoffroy Lerosey, "Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 614-627, 2011.
doi:10.1080/17455030.2011.613954
61. Guan, Fuxin, Xiangdong Guo, Kebo Zeng, Shu Zhang, Zhaoyu Nie, Shaojie Ma, Qing Dai, John Pendry, Xiang Zhang, and Shuang Zhang, "Overcoming losses in superlenses with synthetic waves of complex frequency," Science, Vol. 381, No. 6659, 766-771, Aug. 2023.
doi:10.1126/science.adi1267
62. Lemoult, Fabrice, Abdelwaheb Ourir, Julien de Rosny, Arnaud Tourin, Mathias Fink, and Geoffroy Lerosey, "Time reversal in subwavelength-scaled resonant media: Beating the diffraction limit," International Journal of Microwave Science and Technology, Vol. 2011, No. 1, 425710, 2011.
doi:10.1155/2011/425710
63. Ourir, Abdelwaheb, Geoffroy Lerosey, Fabrice Lemoult, Mathias Fink, and Julien de Rosny, "Far field subwavelength imaging of magnetic patterns," Applied Physics Letters, Vol. 101, No. 11, 111102, Sep. 2012.
doi:10.1063/1.4748974
64. Dupré, Matthieu, Fabrice Lemoult, Mathias Fink, and Geoffroy Lerosey, "Exploiting spatiotemporal degrees of freedom for far-field subwavelength focusing using time reversal in fractals," Physical Review B, Vol. 93, No. 18, 180201, May 2016.
doi:10.1103/physrevb.93.180201
65. Gong, Zhi-Shuang, Bing-Zhong Wang, Yu Yang, Hong-Cheng Zhou, Shuai Ding, and Xiao-Hua Wang, "Far-field super-resolution imaging of scatterers with a time-reversal system aided by a grating plate," IEEE Photonics Journal, Vol. 9, No. 1, 1-8, Feb. 2017.
doi:10.1109/jphot.2016.2640661
66. Wang, Xiao-Hua, Min Hu, Bing-Zhong Wang, Gang Zheng, and Peng Chen, "Near-field periodic subwavelength holey metallic plate for far-field superresolution focusing," IEEE Photonics Journal, Vol. 9, No. 1, 1-7, Feb. 2017.
doi:10.1109/jphot.2017.2657222
67. Chen, Weiping, Li Deng, Kwok L. Chung, Meijun Qu, and Botao Feng, "Metasurface-based time-reversal interpolation method for electromagnetic focusing in complex scattering environments," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 7, 5782-5793, Jul. 2024.
doi:10.1109/tap.2024.3414615
68. Wang, Ren, Jinpin Liu, Yanhe Lv, Zhipeng Wang, Sheng Liu, Moran Zhang, Shuai Ding, and Bing-Zhong Wang, "Subwavelength field shaping approach based on time reversal technique and defective metasurfaces," IEEE Access, Vol. 7, 84629-84636, 2019.
doi:10.1109/access.2019.2925700
69. De Rosny, Julien, Geoffroy Lerosey, and Mathias Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3139-3149, Oct. 2010.
doi:10.1109/tap.2010.2052567
70. Lerosey, Geoffroy, Julien de Rosny, Arnaud Tourin, and Mathias Fink, "Focusing beyond the diffraction limit with far-field time reversal," Science, Vol. 315, No. 5815, 1120-1122, Feb. 2007.
doi:10.1126/science.1134824
71. Ge, G.-D., R. Zang, D. Wang, S. Ding, and B.-Z. Wang, "Sub-wavelength array of planar antennas with defect oval rings based on far-field time reversal," Electronics Letters, Vol. 47, No. 16, 901-903, Aug. 2011.
doi:10.1049/el.2011.1144
72. Ge, Guang-Ding, Duo Wang, and Bing-Zhong Wang, "Subwavelength array of planar triangle monopoles with cross slots based on far-field time reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.
doi:10.2528/pier11021701
73. Liang, Mu-Sheng and Bing-Zhong Wang, "A miniaturized subwavelength array of planar monopoles based on far-field time reversal," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, China, May 2012.
doi:10.1109/icmmt.2012.6229938
74. Ding, Shuai, Bing-Zhong Wang, Guangding Ge, and Deshuang Zhao, "Sub-wavelength array with embedded chirped delay lines based on time reversal technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2868-2873, May 2013.
doi:10.1109/tap.2013.2242831
75. Huang, Hai-Yan, Shuai Ding, Bing-Zhong Wang, and Rui Zang, "Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal," Chinese Physics B, Vol. 23, No. 6, 064101, 2014.
doi:10.1088/1674-1056/23/6/064101
76. Yang, Changxing, Min Zhu, Cheng Zhou, and Deshuang Zhao, "Sub-wavelength UWB antenna array with fractal slots and split ring resonators for time reversal super-resolution focusing," 2014 IEEE International Conference on Communiction Problem-Solving, 173-175, Beijing, China, Dec. 2014.
doi:10.1109/iccps.2014.7062245
77. Gao, Qiang, Bing-Zhong Wang, and Xiao-Hua Wang, "Far-field super-resolution imaging with compact and multifrequency planar resonant lens based on time reversal," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5586-5592, Dec. 2015.
doi:10.1109/tap.2015.2496098
78. Ding, Shuai, Shulabh Gupta, Rui Zang, Lianfeng Zou, Bing-Zhong Wang, and Christophe Caloz, "Enhancement of time-reversal subwavelength wireless transmission using pulse shaping," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4169-4174, Sep. 2015.
doi:10.1109/tap.2015.2445414
79. Liang, Mu-Sheng, Bing-Zhong Wang, Zhi-Min Zhang, and Shuai Ding, "Simplified pulse shaping network for microwave signal focusing based on time reversal," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 225-228, 2015.
doi:10.1109/lawp.2014.2360671
80. Wang, Ren, Bing-Zhong Wang, Yu Yang, Mu-Sheng Liang, Zhi-Shuang Gong, and Xiao Ding, "Compact multiport antenna for time reversal communication system," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, Nanjing, China, Dec. 2015.
doi:10.1109/apmc.2015.7411683
81. Tu, Huilin, Shaoqiu Xiao, Dominique Lesselier, and Mohammed Serhir, "Super-resolution characteristics based on time-reversed single-frequency electromagnetic wave," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 13, 1670-1680, 2016.
doi:10.1080/09205071.2016.1210037
82. Tu, Hui-Lin and Shao-Qiu Xiao, "Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique," AIP Advances, Vol. 6, No. 5, 055001, May 2016.
doi:10.1063/1.4948693
83. Wang, Kai, Wei Shao, Haiyan Ou, and Bing-Zhong Wang, "Time-reversal focusing beyond the diffraction limit using near-field auxiliary sources," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2828-2831, 2017.
doi:10.1109/lawp.2017.2748951
84. Yang, Xue-Song, Man-Man Zhang, Tong Li, and Bing-Zhong Wang, "A compact MIMO antenna and its time reversal super-resolution focusing," 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 118-119, Auckland, New Zealand, Aug. 2018.
doi:10.1109/apcap.2018.8538045
85. Twumasi, Baidenger Agyekum and Jia-Lin Li, "Numerical simulation study on bowtie antenna-based time reversal mirror for super-resolution target detection," Journal of Electrical Engineering, Vol. 70, No. 3, 236-243, Jun. 2019.
doi:10.2478/jee-2019-0032
86. Gao, Qiang and Xiao-Qiu Li, "Wideband far-field super-resolution focusing based on composite metalens," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, May 2019.
doi:10.1109/icmmt45702.2019.8992137
87. Ran, Peipei, Siyuan Chen, Mohammed Serhir, and Dominique Lesselier, "Imaging of subwavelength microstructures by time reversal and neural networks, from synthetic to laboratory-controlled data," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8753-8762, Dec. 2021.
doi:10.1109/tap.2021.3083741
88. Ricker, Norman, "Wavelet functions and their polynomials," Geophysics, Vol. 9, No. 3, 287-409, Jul. 1944.
doi:10.1190/1.1445082
89. Prada, Claire, Sébastien Manneville, Dimitri Spoliansky, and Mathias Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," The Journal of the Acoustical Society of America, Vol. 99, No. 4, 2067-2076, Apr. 1996.
doi:10.1121/1.415393
90. Gao, Wei, Xiao-Hua Wang, and Bing-Zhong Wang, "Time-reversal ESPRIT imaging method for the detection of single target," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 5, 634-640, 2014.
doi:10.1080/09205071.2014.882797
91. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/tap.1986.1143830
92. Lehman, Sean K. and Anthony J. Devaney, "Transmission mode time-reversal super-resolution imaging," The Journal of the Acoustical Society of America, Vol. 113, No. 5, 2742-2753, May 2003.
doi:10.1121/1.1566975
93. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, May 2005.
doi:10.1109/tap.2005.846723
94. Davy, Matthieu, Jean-Gabriel Minonzio, Julien de Rosny, Claire Prada, and Mathias Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/pier09071004
95. Solimene, Raffaele and Angela Dell'Aversano, "Some remarks on time-reversal MUSIC for two-dimensional thin PEC scatterers," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 6, 1163-1167, Jun. 2014.
doi:10.1109/lgrs.2013.2288516
96. Cheng, Zi-Han, Huan Li, Chaoying Huang, Deshuang Zhao, and Bing-Zhong Wang, "Tradeoff of computational complexity and accuracy in space frequency time reversal imaging," IEEE Sensors Journal, Vol. 25, No. 3, 4980-4989, 2025.
doi:10.1109/jsen.2024.3511655
97. Choi, Heedong, Yasutaka Ogawa, Toshihiko Nishimura, and Takeo Ohgane, "Time-reversal MUSIC imaging with time-domain gating technique," IEICE Transactions on Communications, Vol. E95-B, No. 7, 2377-2385, 2012.
doi:10.1587/transcom.e95.b.2377
98. Moura, JosÉ M. F. and Yuanwei Jin, "Time reversal imaging by adaptive interference canceling," IEEE Transactions on Signal Processing, Vol. 56, No. 1, 233-247, Jan. 2008.
doi:10.1109/tsp.2007.906745
99. Solimene, Raffaele, Angela Dell'Aversano, and Giovanni Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/pier12062103
100. Le Boudec, Elias, Hamidreza Karami, David Martinez, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Single-shot experimental localization of electromagnetic interference sources with application to electrostatic discharges," URSI Radio Science Letters, Vol. 7, 2025.
doi:10.46620/25-0016
101. Liu, Dehong, Gang Kang, Ling Li, Ye Chen, S. Vasudevan, W. Joines, Qing Huo Liu, J. Krolik, and L. Carin, "Electromagnetic time-reversal imaging of a target in a cluttered environment," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3058-3066, Sep. 2005.
doi:10.1109/tap.2005.854563
102. Wang, Xiaohua, Wei Gao, and Bingzhong Wang, "Efficient hybrid method for time reversal superresolution imaging," Journal of Systems Engineering and Electronics, Vol. 26, No. 1, 32-37, Feb. 2015.
doi:10.1109/jsee.2015.00005
103. Engin, Erman and Meriç Özcan, "Moving target detection using super-resolution algorithms with an ultra wideband radar," International Journal of Imaging Systems and Technology, Vol. 20, No. 3, 237-244, 2010.
doi:10.1002/ima.20242
104. Zhang, Guangmin, Junxiao Zhu, Jiaquan Li, and Ning Wang, "High-resolution imaging algorithm based on temporal focal characteristic of time-reversed signal," Systems Science & Control Engineering, Vol. 7, No. 1, 198-209, 2019.
doi:10.1080/21642583.2019.1624222
105. Shi, Sheng-Bing, Wei Shao, Jing Ma, Congjun Jin, and Xiao-Hua Wang, "Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves," Journal of Computational Physics, Vol. 345, 475-483, Sep. 2017.
doi:10.1016/j.jcp.2017.05.036
106. Wei, Xiao-Kun, Wei Shao, Haiyan Ou, and Bing-Zhong Wang, "Efficient WLP-FDTD with complex frequency-shifted PML for super-resolution analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1007-1010, 2017.
doi:10.1109/lawp.2016.2616289
107. So, Poman P. M. and Wolfgang J. R. Hoefer, "A new look at computational time reversal in TLM," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 1-4, Pavia, Italy, May 2014.
doi:10.1109/nemo.2014.6995669
108. So, Poman P. M. and Wolfgang J. R. Hoefer, "Source reconstruction with superresolution using TLM time reversal," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, Tampa, FL, USA, Jun. 2014.
doi:10.1109/mwsym.2014.6848292
109. Hoefer, Wolfgang J. R. and Poman P. M. So, "Reconstruction of non-simultaneous impulsive sources with superresolution in TLM by computational time reversal," 2015 IEEE MTT-S International Microwave Symposium, 1-3, Phoenix, AZ, USA, May 2015.
doi:10.1109/mwsym.2015.7167031
110. Hoefer, Wolfgang J. R., "Superresolution imaging by computational time reversal in scattering media," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1302-1303, Vancouver, BC, Canada, Jul. 2015.
doi:10.1109/aps.2015.7305040
111. Hoefer, Wolfgang J. R., "Computational time reversal --- A frontier in electromagnetic structure synthesis and design," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 3-10, Jan. 2015.
doi:10.1109/tmtt.2014.2373367
112. Hoefer, Wolfgang J. R. and Poman P. M. So, "A scattering slab and time reversal make a computational superlens," 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-3, Ottawa, ON, Canada, Aug. 2015.
doi:10.1109/nemo.2015.7415052
113. Cozza, Andrea, "Emulating an anechoic environment in a wave-diffusive medium through an extended time-reversal approach," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3838-3852, Aug. 2012.
doi:10.1109/tap.2012.2201097
114. Maisto, Maria Antonia, Mario Del Prete, Antonio Cuccaro, and Raffaele Solimene, "Near-field phased array diagnostics by a subspace projection method," IEEE Access, Vol. 12, 80283-80299, 2024.
doi:10.1109/access.2024.3409936
115. Taddese, Biniyam Tesfaye, Gabriele Gradoni, Franco Moglie, Thomas M. Antonsen, Edward Ott, and Steven M. Anlage, "Quantifying volume changing perturbations in a wave chaotic system," New Journal of Physics, Vol. 15, No. 2, 023025, Feb. 2013.
doi:10.1088/1367-2630/15/2/023025
116. Chabalko, Matthew J. and Alanson P. Sample, "Electromagnetic time reversal focusing of near field waves in metamaterials," Applied Physics Letters, Vol. 109, No. 26, 263901, Dec. 2016.
doi:10.1063/1.4973210
117. Cheng, Zi-Han, Tao Li, Lin Hu, Xin Ma, Feng Liang, Deshuang Zhao, and Bing-Zhong Wang, "Selectively powering multiple small-size devices spaced at diffraction limited distance with point-focused electromagnetic waves," IEEE Transactions on Industrial Electronics, Vol. 69, No. 12, 13696-13705, Dec. 2022.
doi:10.1109/tie.2021.3135607
118. Twumasi, Baidenger Agyekum, Jia-Lin Li, Faith Kwaku Deynu, Ebenezer Tawiah Ashong, Christian Dzah, and Dustin Pomary, "Selective microwave wireless power transfer to sensors embeddedin concrete at sub-wavelength spacing using electromagnetictime-reversal technique," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 4, 364-375, Apr. 2024.
doi:10.13052/2024.aces.j.390410
119. Bahrami, Siroos, Ahmad Cheldavi, and Ali Abdolali, "Moving target tracking using time reversal method," Progress In Electromagnetics Research M, Vol. 25, 39-52, 2012.
doi:10.2528/pierm12041801
120. Fouda, Ahmed E. and Fernando L. Teixeira, "Imaging and tracking of targets in clutter using differential time-reversal techniques," Waves in Random and Complex Media, Vol. 22, No. 1, 66-108, 2012.
doi:10.1080/17455030.2011.557404
121. De Arriba-Ruiz, Imanol, Jose M. Muñoz-Ferreras, and Félix Pérez-Martínez, "Multipath mitigation techniques based on time reversal concept and superresolution algorithms for inverse synthetic aperture radar imaging," IET Radar, Sonar & Navigation, Vol. 7, No. 4, 413-421, 2013.
doi:10.1049/iet-rsn.2012.0261
122. Yu, Zhiru, Jin Pan, Deqiang Yang, and Xuan Xie, "Time-divided multi-channel technique for EM-TRM based object detection system in complex environment," 2009 Asia Pacific Microwave Conference, 2328-2331, Singapore, Dec. 2009.
doi:10.1109/apmc.2009.5385451
123. Karami, Hamidreza, André Koch, Carlos Romero, Marcos Rubinstein, and Farhad Rachidi, "Landmine detection using electromagnetic time reversalbased methods: 1. Classical TR, iterative TR, DORT and TR-MUSIC," Radio Science, Vol. 59, No. 10, 1-13, 2024.
doi:10.1029/2024rs007971
124. Karami, Hamidreza, André Koch, Carlos Romero, Marcos Rubinstein, and Farhad Rachidi, "Landmine detection using electromagnetic time reversal-based methods: 2. Performance analysis of TR-MUSIC," Radio Science, Vol. 59, No. 10, e2024RS007972, 2024.
doi:10.1029/2024rs007972
125. Liu, Xiao-Fei, Bing-Zhong Wang, and Shao-Qiu Xiao, "Electromagnetic subsurface detection using subspace signal processing and half-space dyadic Green's function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/pier09092902
126. Zhang, Wenji, Ahmad Hoorfar, and Lim Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/pier10052408
127. Mukherjee, Saptarshi, Zhiyi Su, Lalita Udpa, Satish Udpa, and Antonello Tamburrino, "Enhancement of microwave imaging using a metamaterial lens," IEEE Sensors Journal, Vol. 19, No. 13, 4962-4971, Jul. 2019.
doi:10.1109/jsen.2019.2903454
128. Mukherjee, Saptarshi, Xiaodong Shi, Srijan Datta, Yiming Deng, Satish Udpa, and Lalita Udpa, "Enhancement of microwave time reversal imaging using metallic reflectors," NDT & E International, Vol. 110, 102192, Mar. 2020.
doi:10.1016/j.ndteint.2019.102192
129. Tian, Shan, Xiaoqing Yang, Huajiang Peng, Ting Zhang, Feng Gao, and Jieping Wu, "Frequency domain time reversal adaptive focusing on nondestructive testing imaging method for composite materials," Journal of Nondestructive Evaluation, Vol. 44, No. 3, 82, 2025.
doi:10.1007/s10921-025-01218-5
130. Hossain, Md. Delwar, Ananda Sanagavarapu Mohan, and Mohammed Jainul Abedin, "Beamspace time-reversal microwave imaging for breast cancer detection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 241-244, 2013.
doi:10.1109/lawp.2013.2247018
131. Hossain, Md. Delwar and Ananda Sanagavarapu Mohan, "Cancer detection in highly dense breasts using coherently focused time-reversal microwave imaging," IEEE Transactions on Computational Imaging, Vol. 3, No. 4, 928-939, Dec. 2017.
doi:10.1109/tci.2017.2737947
132. Fasoula, A., B. M. Moloney, L. Duchesne, J. D. Gil Cano, B. L. Oliveira, J.-G. Bernard, and M. J. Kerin, "Super-resolution radar imaging for breast cancer detection with microwaves: The integrated information selection criteria," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1868-1874, Berlin, Germany, Jul. 2019.
doi:10.1109/embc.2019.8857924
133. Twumasi, Baidenger Agyekum, Jia-Lin Li, and Christian Dzah, "Sensitivity enhancement of super resolution breast tumour imaging with far-field time reversal mirror integrating with multi-layered sub-wavelength patch scatterers," Journal of Physics D: Applied Physics, Vol. 53, No. 7, 075401, Dec. 2019.
doi:10.1088/1361-6463/ab56b0
134. Twumasi, Baidenger Agyekum, Jia-Lin Li, Ebenezer Tawiah Ashong, Christian Dzah, and Dustin Pomary, "Time reversal mirror for hyperthermia of multi-focal breast tumors using electromagnetic time reversal technique," Electromagnetics, Vol. 42, No. 8, 594-615, 2022.
doi:10.1080/02726343.2022.2161707
135. Wu, Crystal T., Nuno M. Nobre, Emmanuel Fort, Graham D. Riley, and Fumie Costen, "Tailoring instantaneous time mirrors for time reversal focusing in absorbing media," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9630-9640, Oct. 2022.
doi:10.1109/tap.2022.3184482
136. Casu, Mario R., Marco Vacca, Jorge A. Tobon, Azzurra Pulimeno, Imran Sarwar, Raffaele Solimene, and Francesca Vipiana, "A COTS-based microwave imaging system for breast-cancer detection," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 804-814, Aug. 2017.
doi:10.1109/tbcas.2017.2703588
137. Hajiahmadi, Mohamad J., Reza Faraji-Dana, and Christophe Caloz, "Metasurface-based time-reversal focusing for brain tumor microwave hyperthermia," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 12237-12246, Dec. 2022.
doi:10.1109/tap.2022.3210691
138. Henty, Benjamin E. and Daniel D. Stancil, "Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays," Physical Review Letters, Vol. 93, No. 24, 243904, Dec. 2004.
doi:10.1103/physrevlett.93.243904
139. Borcea, Liliana, George Papanicolaou, and Chrysoula Tsogka, "Theory and applications of time reversal and interferometric imaging," Inverse Problems, Vol. 19, No. 6, S139, Nov. 2003.
doi:10.1088/0266-5611/19/6/058
140. Zakeri, M. Javad and Sajjad Sadeghi, "Electromagnetic time-reversal positioning of a single user in a street canyon scenario," Journal of Electromagnetic Waves and Applications, Vol. 39, No. 13, 1600-1618, Jun. 2025.
doi:10.1080/09205071.2025.2524399
141. Liu, Jia, Deshuang Zhao, Bing-Zhong Wang, Junhua Dou, and Guangding Ge, "Time-reversal method for coexistence between ultrawideband radios and IEEE802.11a systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 1065-1071, Nov. 2011.
doi:10.1109/temc.2011.2160454
142. Guo, Zheng, Zihan Cheng, Lin Chen, and Deshuang Zhao, "Resolution-enhanced and accurate cascade time-reversal operator decomposition (C-DORT) approach for positioning radiated passive intermodulation sources," Electronics, Vol. 12, No. 9, 2104, 2023.
doi:10.3390/electronics12092104
143. Ge, Guang-Ding, Bing-Zhong Wang, Duo Wang, Deshuang Zhao, and Shuai Ding, "Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4345-4350, Nov. 2011.
doi:10.1109/tap.2011.2164190
144. Wang, Ren, Bing-Zhong Wang, Zhi-Shuang Gong, and Xiao Ding, "Compact multiport antenna with radiator-sharing approach and its performance evaluation of time reversal in an intra-car environment," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4213-4219, Sep. 2015.
doi:10.1109/tap.2015.2448799
145. Colton, David and Rainer Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer, Cham, Switzerland, 2019.
doi:10.1007/978-1-4614-4942-3
146. Le Boudec, Elias, Chaouki Kasmi, Nicolas Mora, Farhad Rachidi, Emanuela Radici, Marcos Rubinstein, and Felix Vega, "The time-domain Cartesian multipole expansion of electromagnetic fields," Scientific Reports, Vol. 14, No. 1, 8084, Apr. 2024.
doi:10.1038/s41598-024-58570-1
147. Le Boudec, E., Eliasleb/Subwavelength_emtr_review: Zenodov2 version v2. Zenodo, https://doi.org/10.5281/zenodo.15944905, Jul. 2025.