Vol. 184
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-12-15
Radio-Frequency Subwavelength Time-Reversal Imaging and Focusing: A Review of Theory, Methods, and Applications
By
Progress In Electromagnetics Research, Vol. 184, 43-61, 2025
Abstract
Time reversal is an established wave imaging and focusing method that has proved to be robust and compatible with super-resolution imaging and focusing, i.e., to provide images and foci with subwavelength features beyond the diffraction limit. The method has been applied to numerous wave systems. We propose a systematic review of super-resolution time reversal applied to electromagnetic waves in the radio-frequency regime. We examine the theoretical foundation, the methods and the applications of radio-frequency super-resolution time-reversal. We explain a seeming contradiction between a widely used model of resolution due to the time-reversal cavity, and a common approach of Fourier optics highlighting the significance of evanescent waves for super-resolution. We also present an application of one of the algorithms of time-reversal imaging (known as TR-MUSIC) to measurements in a highly reflective environment, such as a resonant cavity. Finally, we outline open questions and applications.
Citation
Elias Le Boudec, Hamidreza Karami, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Radio-Frequency Subwavelength Time-Reversal Imaging and Focusing: A Review of Theory, Methods, and Applications," Progress In Electromagnetics Research, Vol. 184, 43-61, 2025.
doi:10.2528/PIER25071806
References

1. Wang, H., C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, "Fighting against diffraction: Apodization and near field diffraction structures," Laser & Photonics Reviews, Vol. 6, No. 3, 354-392, May 2012.
doi:10.1002/lpor.201100009

2. Mosk, Allard P., Ad Lagendijk, Geoffroy Lerosey, and Mathias Fink, "Controlling waves in space and time for imaging and focusing in complex media," Nature Photonics, Vol. 6, No. 5, 283-292, May 2012.
doi:10.1038/nphoton.2012.88

3. Bertolotti, Jacopo and Ori Katz, "Imaging in complex media," Nature Physics, Vol. 18, No. 9, 1008-1017, Sep. 2022.
doi:10.1038/s41567-022-01723-8

4. Lu, Dylan and Zhaowei Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, No. 1, 1205, Nov. 2012.
doi:10.1038/ncomms2176

5. Glybovski, Stanislav B., Sergei A. Tretyakov, Pavel A. Belov, Yuri S. Kivshar, and Constantin R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, May 2016.
doi:10.1016/j.physrep.2016.04.004

6. You, Jian Wei, Zhihao Lan, Qian Ma, Zhen Gao, Yihao Yang, Fei Gao, Meng Xiao, and Tie Jun Cui, "Topological metasurface: From passive toward active and beyond," Photonics Research, Vol. 11, No. 3, B65-B102, 2023.
doi:10.1364/prj.471905

7. Kumar, Anish and Walter Arnold, "High resolution in non-destructive testing: A review," Journal of Applied Physics, Vol. 132, No. 10, 100901, Sep. 2022.
doi:10.1063/5.0095328

8. Ishimaru, A., Y. Kuga, and M. Bright, Advances in Mathematical Methods for Electromagnetics, 653-672, IET Digital Library, Dec. 2020.

9. Wang, Zhaoyang, Shaoyin He, Reza Razzaghi, Mario Paolone, Yanzhao Xie, and Farhad Rachidi, "A review of time reversal-based methods applied to fault location in power networks," Frontiers in Energy Research, Vol. 10, 1060938, Dec. 2022.
doi:10.3389/fenrg.2022.1060938

10. Yavuz, Mehmet Emre and Fernando L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 1, No. 3, 466-495, 2009.
doi:10.3390/rs1030466

11. Fink, Mathias, "From Loschmidt daemons to time-reversed waves," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, No. 2069, 20150156, Jun. 2016.
doi:10.1098/rsta.2015.0156

12. Lu, Jian-Yu, "Reconstruction methods for super-resolution imaging with PSF modulation," The Journal of the Acoustical Society of America, Vol. 155, No. 3, A54, Mar. 2024.
doi:10.1121/10.0026777

13. Slobozhanyuk, Alexey P., Alexander N. Poddubny, Alexander J. E. Raaijmakers, Cornelis A. T. Van Den Berg, Alexander V. Kozachenko, Irina A. Dubrovina, Irina V. Melchakova, Yuri S. Kivshar, and Pavel A. Belov, "Enhancement of magnetic resonance imaging with metasurfaces," Advanced Materials, Vol. 28, No. 9, 1832-1838, Mar. 2016.
doi:10.1002/adma.201504270

14. Brui, Ekaterina A., Alena V. Shchelokova, Mikhail Zubkov, Irina V. Melchakova, Stanislav B. Glybovski, and Alexey P. Slobozhanyuk, "Adjustable subwavelength metasurface-inspired resonator for magnetic resonance imaging," Physica Status Solidi (A), Vol. 215, No. 5, 1700788, Mar. 2018.
doi:10.1002/pssa.201700788

15. Slobozhanyuk, A. P., I. V. Melchakova, A. V. Kozachenko, D. S. Filonov, C. R. Simovski, and P. A. Belov, "An endoscope based on extremely anisotropic metamaterials for applications in magnetic resonance imaging," Journal of Communications Technology and Electronics, Vol. 59, No. 6, 562-570, Jul. 2014.
doi:10.1134/s1064226914040111

16. Gholipour, Ali, Onur Afacan, Iman Aganj, Benoit Scherrer, Sanjay P. Prabhu, Mustafa Sahin, and Simon K. Warfield, "Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through‐plane partial voluming in MRI," Medical Physics, Vol. 42, No. 12, 6919-6932, Dec. 2015.
doi:10.1118/1.4935149

17. Gao, Kai, Carly M. Donahue, Bradley G. Henderson, and Ryan T. Modrak, "SREMI: Super-resolution electromagnetic imaging with single-channel ground-penetrating radar," Journal of Applied Geophysics, Vol. 205, 104777, Oct. 2022.
doi:10.1016/j.jappgeo.2022.104777

18. Astratov, Vasily N., Yair Ben Sahel, Yonina C. Eldar, Luzhe Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao, Zachary Burns, Zhaowei Liu, Evgenii Narimanov, et al. "Roadmap on label-free super-resolution imaging," Laser & Photonics Reviews, Vol. 17, No. 12, 2200029, Dec. 2023.
doi:10.1002/lpor.202200029

19. Carminati, R., R. Pierrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Optics Letters, Vol. 32, No. 21, 3107-3109, 2007.
doi:10.1364/ol.32.003107

20. Feng, Xiao-Yao, Zhizhang Chen, Zhi-Meng Xu, and Juan Li, "Time-reversal source reconstruction with space and time kurtoses," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4766-4773, Jun. 2022.
doi:10.1109/tap.2021.3137384

21. Ghaderi Aram, M., M. Haghparast, M. S. Abrishamian, and A. Mirtaheri, "Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems," Inverse Problems in Science and Engineering, Vol. 24, No. 8, 1347-1363, 2016.
doi:10.1080/17415977.2015.1104308

22. Bal, Guillaume and Leonid Ryzhik, "Time reversal and refocusing in random media," SIAM Journal on Applied Mathematics, Vol. 63, No. 5, 1475-1498, 2003.
doi:10.1137/s0036139902401082

23. Fink, M., "Time-reversal waves and super resolution," Journal of Physics: Conference Series, Vol. 124, No. 1, 012004, 2008.
doi:10.1088/1742-6596/124/1/012004

24. Shi, Gang and Arye Nehorai, "Cramér-Rao bound analysis on multiple scattering in multistatic point-scatterer estimation," IEEE Transactions on Signal Processing, Vol. 55, No. 6, 2840-2850, Jun. 2007.
doi:10.1109/icassp.2006.1661169

25. Ammari, Habib, Bowen Li, and Jun Zou, "Superresolution in recovering embedded electromagnetic sources in high contrast media," SIAM Journal on Imaging Sciences, Vol. 13, No. 3, 1467-1510, 2020.
doi:10.1137/20m1313908

26. Simonetti, F., "Multiple scattering: The key to unravel the subwavelength world from the far-field pattern of a scattered wave," Physical Review E, Vol. 73, No. 3, 036619, Mar. 2006.
doi:10.1103/physreve.73.036619

27. Ishimaru, Akira, Sermsak Jaruwatanadilok, and Yasuo Kuga, "Imaging through random multiple scattering media using integration of propagation and array signal processing," Waves in Random and Complex Media, Vol. 22, No. 1, 24-39, 2012.
doi:10.1080/17455030.2010.528065

28. Fouque, J. P. and K. Solna, "Time-reversal aperture enhancement," Multiscale Modeling & Simulation, Vol. 1, No. 2, 239-259, 2003.
doi:10.1137/s1540345902414443

29. Ishimaru, Akira, Sermsak Jaruwatanadilok, and Yasuo Kuga, "Time reversal effects in random scattering media on superresolution, shower curtain effects, and backscattering enhancement," Radio Science, Vol. 42, No. 6, 1-9, Dec. 2007.
doi:10.1029/2007rs003645

30. Chan, T., S. Jaruwatanadilok, Y. Kuga, and A. Ishimaru, "Numerical study of the time-reversal effects on super-resolution in random scattering media and comparison with an analytical model," Waves in Random and Complex Media, Vol. 18, No. 4, 627-639, Oct. 2008.
doi:10.1080/17455030802244286

31. Yavuz, M. E. and F. L. Teixeira, "A numerical study of time-reversed UWB electromagnetic waves in continuous random media," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 43-46, 2005.
doi:10.1109/lawp.2005.844117

32. Gomez, Christophe, "Time-reversal superresolution in random waveguides," Multiscale Modeling & Simulation, Vol. 7, No. 3, 1348-1386, 2009.
doi:10.1137/080719492

33. Papanicolaou, G., K. Solna, and L. Ryzhik, "Statistical stability in time reversal," SIAM Journal on Applied Mathematics, Vol. 64, No. 4, 1133-1155, 2004.
doi:10.1137/s0036139902411107

34. Le Boudec, Elias, Nicolas Mora, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Time-reversed electromagnetic fields in anisotropic media," Optics Letters, Vol. 49, No. 7, 1820-1823, 2024.
doi:10.1364/ol.510604

35. De Rosny, Julien and Mathias Fink, "Focusing properties of near-field time reversal," Physical Review A, Vol. 76, No. 6, 065801, Dec. 2007.
doi:10.1103/physreva.76.065801

36. Fannjiang, Albert C., "On time reversal mirrors," Inverse Problems, Vol. 25, No. 9, 095010, Sep. 2009.
doi:10.1088/0266-5611/25/9/095010

37. Jaimes, Manuel A. and Roel Snieder, "Spatio-temporal resolution improvement via weighted time-reversal," Wave Motion, Vol. 106, 102803, Nov. 2021.
doi:10.1016/j.wavemoti.2021.102803

38. Farhi, Asaf, "Three-dimensional-subwavelength field localization, time reversal of sources, and infinite, asymptotic degeneracy in spherical structures," Physical Review A, Vol. 101, No. 6, 063818, Jun. 2020.
doi:10.1103/physreva.101.063818

39. Wang, Zhaoyang, Farhad Rachidi, Mario Paolone, Marcos Rubinstein, and Reza Razzaghi, "A closed time-reversal cavity for electromagnetic waves in transmission line networks," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1621-1630, Mar. 2021.
doi:10.1109/tap.2020.3019348

40. Wang, Zhaoyang, Reza Razzaghi, Mario Paolone, and Farhad Rachidi, "Electromagnetic time reversal similarity characteristics and its application to locating faults in power networks," IEEE Transactions on Power Delivery, Vol. 35, No. 4, 1735-1748, Aug. 2020.
doi:10.1109/tpwrd.2019.2952207

41. He, Shao-Yin, Andrea Cozza, and Yan-Zhao Xie, "On the spatial resolution of fault-location techniques based on full-fault transients," IEEE Transactions on Power Delivery, Vol. 35, No. 3, 1527-1540, Jun. 2020.
doi:10.1109/tpwrd.2019.2949914

42. Bal, Guillaume, Mathias Fink, and Olivier Pinaud, "Time-reversal by time-dependent perturbations," SIAM Journal on Applied Mathematics, Vol. 79, No. 3, 754-780, 2019.
doi:10.1137/18m1216894

43. Bossy, E. and R. Carminati, "Time-domain radiation and absorption by subwavelength sources," Europhysics Letters, Vol. 97, No. 3, 34001, Jan. 2012.
doi:10.1209/0295-5075/97/34001

44. Li, Xiao, Pengqi Li, Ming-Hui Lu, Mathias Fink, and Guancong Ma, "Negative transient flux in the near field of a subwavelength source," Physical Review Applied, Vol. 16, No. 1, L011004, Jul. 2021.
doi:10.1103/physrevapplied.16.l011004

45. De Rosny, J. and M. Fink, "Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink," Physical Review Letters, Vol. 89, No. 12, 124301, Aug. 2002.
doi:10.1103/physrevlett.89.124301

46. Zverev, V. A., "Spatial focusing of a time-reversed pulse," Radiophysics and Quantum Electronics, Vol. 46, No. 7, 517-522, Jul. 2003.
doi:10.1023/b:raqe.0000019867.57582.20

47. Ma, Guancong, Xiying Fan, Fuyin Ma, Julien de Rosny, Ping Sheng, and Mathias Fink, "Towards anti-causal Green's function for three-dimensional sub-diffraction focusing," Nature Physics, Vol. 14, No. 6, 608-612, 2018.
doi:10.1038/s41567-018-0082-3

48. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, Oct. 2000.
doi:10.1103/physrevlett.85.3966

49. Pendry, J. B., "Time reversal and negative refraction," Science, Vol. 322, No. 5898, 71-73, Oct. 2008.
doi:10.1126/science.1162087

50. Liao, Tien-Hao, Po-Chuan Hsieh, and Fu-Chiarng Chen, "Subwavelength target detection using ultrawideband time-reversal techniques with a multilayered dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 835-838, 2009.
doi:10.1109/lawp.2009.2025897

51. Katko, A. R., G. Shvets, and S. A. Cummer, "Phase conjugation metamaterials: Particle design and imaging experiments," J. Opt., Vol. 14, No. 11, 114003, Jul. 2012.

52. Goodman, J. W., Introduction to Fourier Optics, 2nd Ed., 441, McGraw-Hill, New York, 1996.
doi:10.1063/1.3035549

53. Le Boudec, Elias, Hamidreza Karami, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Reconciling super-resolution imaging predictions from the time-reversal cavity and Fourier optics," 2025 URSI AP-RASC, Sydney, Australia, Aug. 2025.
doi:10.46620/ursiaprasc25/pdav3406

54. Massey, G. A., "Microscopy and pattern generation with scanned evanescent waves," Applied Optics, Vol. 23, No. 5, 658-660, 1984.
doi:10.1364/ao.23.000658

55. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100°C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, Feb. 2007.
doi:10.1063/1.2360986

56. Belov, Pavel A., Yang Hao, and Sunil Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Physical Review B, Vol. 73, No. 3, 033108, Jan. 2006.
doi:10.1103/physrevb.73.033108

57. Lemoult, Fabrice, Geoffroy Lerosey, Julien de Rosny, and Mathias Fink, "Resonant metalenses for breaking the diffraction barrier," Physical Review Letters, Vol. 104, No. 20, 203901, May 2010.
doi:10.1103/physrevlett.104.203901

58. Lemoult, Fabrice, Mathias Fink, and Geoffroy Lerosey, "Revisiting the wire medium: An ideal resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 591-613, Oct. 2011.
doi:10.1080/17455030.2011.611836

59. Belov, Pavel A., Yan Zhao, Simon Tse, Pekka Ikonen, Mário G. Silveirinha, Constantin R. Simovski, Sergei Tretyakov, Yang Hao, and Clive Parini, "Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range," Physical Review B, Vol. 77, No. 19, 193108, May 2008.
doi:10.1103/physrevb.77.193108

60. Lemoult, Fabrice, Mathias Fink, and Geoffroy Lerosey, "Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens," Waves in Random and Complex Media, Vol. 21, No. 4, 614-627, 2011.
doi:10.1080/17455030.2011.613954

61. Guan, Fuxin, Xiangdong Guo, Kebo Zeng, Shu Zhang, Zhaoyu Nie, Shaojie Ma, Qing Dai, John Pendry, Xiang Zhang, and Shuang Zhang, "Overcoming losses in superlenses with synthetic waves of complex frequency," Science, Vol. 381, No. 6659, 766-771, Aug. 2023.
doi:10.1126/science.adi1267

62. Lemoult, Fabrice, Abdelwaheb Ourir, Julien de Rosny, Arnaud Tourin, Mathias Fink, and Geoffroy Lerosey, "Time reversal in subwavelength-scaled resonant media: Beating the diffraction limit," International Journal of Microwave Science and Technology, Vol. 2011, No. 1, 425710, 2011.
doi:10.1155/2011/425710

63. Ourir, Abdelwaheb, Geoffroy Lerosey, Fabrice Lemoult, Mathias Fink, and Julien de Rosny, "Far field subwavelength imaging of magnetic patterns," Applied Physics Letters, Vol. 101, No. 11, 111102, Sep. 2012.
doi:10.1063/1.4748974

64. Dupré, Matthieu, Fabrice Lemoult, Mathias Fink, and Geoffroy Lerosey, "Exploiting spatiotemporal degrees of freedom for far-field subwavelength focusing using time reversal in fractals," Physical Review B, Vol. 93, No. 18, 180201, May 2016.
doi:10.1103/physrevb.93.180201

65. Gong, Zhi-Shuang, Bing-Zhong Wang, Yu Yang, Hong-Cheng Zhou, Shuai Ding, and Xiao-Hua Wang, "Far-field super-resolution imaging of scatterers with a time-reversal system aided by a grating plate," IEEE Photonics Journal, Vol. 9, No. 1, 1-8, Feb. 2017.
doi:10.1109/jphot.2016.2640661

66. Wang, Xiao-Hua, Min Hu, Bing-Zhong Wang, Gang Zheng, and Peng Chen, "Near-field periodic subwavelength holey metallic plate for far-field superresolution focusing," IEEE Photonics Journal, Vol. 9, No. 1, 1-7, Feb. 2017.
doi:10.1109/jphot.2017.2657222

67. Chen, Weiping, Li Deng, Kwok L. Chung, Meijun Qu, and Botao Feng, "Metasurface-based time-reversal interpolation method for electromagnetic focusing in complex scattering environments," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 7, 5782-5793, Jul. 2024.
doi:10.1109/tap.2024.3414615

68. Wang, Ren, Jinpin Liu, Yanhe Lv, Zhipeng Wang, Sheng Liu, Moran Zhang, Shuai Ding, and Bing-Zhong Wang, "Subwavelength field shaping approach based on time reversal technique and defective metasurfaces," IEEE Access, Vol. 7, 84629-84636, 2019.
doi:10.1109/access.2019.2925700

69. De Rosny, Julien, Geoffroy Lerosey, and Mathias Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3139-3149, Oct. 2010.
doi:10.1109/tap.2010.2052567

70. Lerosey, Geoffroy, Julien de Rosny, Arnaud Tourin, and Mathias Fink, "Focusing beyond the diffraction limit with far-field time reversal," Science, Vol. 315, No. 5815, 1120-1122, Feb. 2007.
doi:10.1126/science.1134824

71. Ge, G.-D., R. Zang, D. Wang, S. Ding, and B.-Z. Wang, "Sub-wavelength array of planar antennas with defect oval rings based on far-field time reversal," Electronics Letters, Vol. 47, No. 16, 901-903, Aug. 2011.
doi:10.1049/el.2011.1144

72. Ge, Guang-Ding, Duo Wang, and Bing-Zhong Wang, "Subwavelength array of planar triangle monopoles with cross slots based on far-field time reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.
doi:10.2528/pier11021701

73. Liang, Mu-Sheng and Bing-Zhong Wang, "A miniaturized subwavelength array of planar monopoles based on far-field time reversal," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, China, May 2012.
doi:10.1109/icmmt.2012.6229938

74. Ding, Shuai, Bing-Zhong Wang, Guangding Ge, and Deshuang Zhao, "Sub-wavelength array with embedded chirped delay lines based on time reversal technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2868-2873, May 2013.
doi:10.1109/tap.2013.2242831

75. Huang, Hai-Yan, Shuai Ding, Bing-Zhong Wang, and Rui Zang, "Split-ring-based metamaterial for far-field subwavelength focusing based on time reversal," Chinese Physics B, Vol. 23, No. 6, 064101, 2014.
doi:10.1088/1674-1056/23/6/064101

76. Yang, Changxing, Min Zhu, Cheng Zhou, and Deshuang Zhao, "Sub-wavelength UWB antenna array with fractal slots and split ring resonators for time reversal super-resolution focusing," 2014 IEEE International Conference on Communiction Problem-Solving, 173-175, Beijing, China, Dec. 2014.
doi:10.1109/iccps.2014.7062245

77. Gao, Qiang, Bing-Zhong Wang, and Xiao-Hua Wang, "Far-field super-resolution imaging with compact and multifrequency planar resonant lens based on time reversal," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5586-5592, Dec. 2015.
doi:10.1109/tap.2015.2496098

78. Ding, Shuai, Shulabh Gupta, Rui Zang, Lianfeng Zou, Bing-Zhong Wang, and Christophe Caloz, "Enhancement of time-reversal subwavelength wireless transmission using pulse shaping," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4169-4174, Sep. 2015.
doi:10.1109/tap.2015.2445414

79. Liang, Mu-Sheng, Bing-Zhong Wang, Zhi-Min Zhang, and Shuai Ding, "Simplified pulse shaping network for microwave signal focusing based on time reversal," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 225-228, 2015.
doi:10.1109/lawp.2014.2360671

80. Wang, Ren, Bing-Zhong Wang, Yu Yang, Mu-Sheng Liang, Zhi-Shuang Gong, and Xiao Ding, "Compact multiport antenna for time reversal communication system," 2015 Asia-Pacific Microwave Conference (APMC), 1-3, Nanjing, China, Dec. 2015.
doi:10.1109/apmc.2015.7411683

81. Tu, Huilin, Shaoqiu Xiao, Dominique Lesselier, and Mohammed Serhir, "Super-resolution characteristics based on time-reversed single-frequency electromagnetic wave," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 13, 1670-1680, 2016.
doi:10.1080/09205071.2016.1210037

82. Tu, Hui-Lin and Shao-Qiu Xiao, "Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique," AIP Advances, Vol. 6, No. 5, 055001, May 2016.
doi:10.1063/1.4948693

83. Wang, Kai, Wei Shao, Haiyan Ou, and Bing-Zhong Wang, "Time-reversal focusing beyond the diffraction limit using near-field auxiliary sources," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2828-2831, 2017.
doi:10.1109/lawp.2017.2748951

84. Yang, Xue-Song, Man-Man Zhang, Tong Li, and Bing-Zhong Wang, "A compact MIMO antenna and its time reversal super-resolution focusing," 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 118-119, Auckland, New Zealand, Aug. 2018.
doi:10.1109/apcap.2018.8538045

85. Twumasi, Baidenger Agyekum and Jia-Lin Li, "Numerical simulation study on bowtie antenna-based time reversal mirror for super-resolution target detection," Journal of Electrical Engineering, Vol. 70, No. 3, 236-243, Jun. 2019.
doi:10.2478/jee-2019-0032

86. Gao, Qiang and Xiao-Qiu Li, "Wideband far-field super-resolution focusing based on composite metalens," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, May 2019.
doi:10.1109/icmmt45702.2019.8992137

87. Ran, Peipei, Siyuan Chen, Mohammed Serhir, and Dominique Lesselier, "Imaging of subwavelength microstructures by time reversal and neural networks, from synthetic to laboratory-controlled data," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8753-8762, Dec. 2021.
doi:10.1109/tap.2021.3083741

88. Ricker, Norman, "Wavelet functions and their polynomials," Geophysics, Vol. 9, No. 3, 287-409, Jul. 1944.
doi:10.1190/1.1445082

89. Prada, Claire, Sébastien Manneville, Dimitri Spoliansky, and Mathias Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," The Journal of the Acoustical Society of America, Vol. 99, No. 4, 2067-2076, Apr. 1996.
doi:10.1121/1.415393

90. Gao, Wei, Xiao-Hua Wang, and Bing-Zhong Wang, "Time-reversal ESPRIT imaging method for the detection of single target," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 5, 634-640, 2014.
doi:10.1080/09205071.2014.882797

91. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/tap.1986.1143830

92. Lehman, Sean K. and Anthony J. Devaney, "Transmission mode time-reversal super-resolution imaging," The Journal of the Acoustical Society of America, Vol. 113, No. 5, 2742-2753, May 2003.
doi:10.1121/1.1566975

93. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, May 2005.
doi:10.1109/tap.2005.846723

94. Davy, Matthieu, Jean-Gabriel Minonzio, Julien de Rosny, Claire Prada, and Mathias Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/pier09071004

95. Solimene, Raffaele and Angela Dell'Aversano, "Some remarks on time-reversal MUSIC for two-dimensional thin PEC scatterers," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 6, 1163-1167, Jun. 2014.
doi:10.1109/lgrs.2013.2288516

96. Cheng, Zi-Han, Huan Li, Chaoying Huang, Deshuang Zhao, and Bing-Zhong Wang, "Tradeoff of computational complexity and accuracy in space frequency time reversal imaging," IEEE Sensors Journal, Vol. 25, No. 3, 4980-4989, 2025.
doi:10.1109/jsen.2024.3511655

97. Choi, Heedong, Yasutaka Ogawa, Toshihiko Nishimura, and Takeo Ohgane, "Time-reversal MUSIC imaging with time-domain gating technique," IEICE Transactions on Communications, Vol. E95-B, No. 7, 2377-2385, 2012.
doi:10.1587/transcom.e95.b.2377

98. Moura, JosÉ M. F. and Yuanwei Jin, "Time reversal imaging by adaptive interference canceling," IEEE Transactions on Signal Processing, Vol. 56, No. 1, 233-247, Jan. 2008.
doi:10.1109/tsp.2007.906745

99. Solimene, Raffaele, Angela Dell'Aversano, and Giovanni Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/pier12062103

100. Le Boudec, Elias, Hamidreza Karami, David Martinez, Farhad Rachidi, Marcos Rubinstein, and Felix Vega, "Single-shot experimental localization of electromagnetic interference sources with application to electrostatic discharges," URSI Radio Science Letters, Vol. 7, 2025.
doi:10.46620/25-0016

101. Liu, Dehong, Gang Kang, Ling Li, Ye Chen, S. Vasudevan, W. Joines, Qing Huo Liu, J. Krolik, and L. Carin, "Electromagnetic time-reversal imaging of a target in a cluttered environment," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3058-3066, Sep. 2005.
doi:10.1109/tap.2005.854563

102. Wang, Xiaohua, Wei Gao, and Bingzhong Wang, "Efficient hybrid method for time reversal superresolution imaging," Journal of Systems Engineering and Electronics, Vol. 26, No. 1, 32-37, Feb. 2015.
doi:10.1109/jsee.2015.00005

103. Engin, Erman and Meriç Özcan, "Moving target detection using super-resolution algorithms with an ultra wideband radar," International Journal of Imaging Systems and Technology, Vol. 20, No. 3, 237-244, 2010.
doi:10.1002/ima.20242

104. Zhang, Guangmin, Junxiao Zhu, Jiaquan Li, and Ning Wang, "High-resolution imaging algorithm based on temporal focal characteristic of time-reversed signal," Systems Science & Control Engineering, Vol. 7, No. 1, 198-209, 2019.
doi:10.1080/21642583.2019.1624222

105. Shi, Sheng-Bing, Wei Shao, Jing Ma, Congjun Jin, and Xiao-Hua Wang, "Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves," Journal of Computational Physics, Vol. 345, 475-483, Sep. 2017.
doi:10.1016/j.jcp.2017.05.036

106. Wei, Xiao-Kun, Wei Shao, Haiyan Ou, and Bing-Zhong Wang, "Efficient WLP-FDTD with complex frequency-shifted PML for super-resolution analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1007-1010, 2017.
doi:10.1109/lawp.2016.2616289

107. So, Poman P. M. and Wolfgang J. R. Hoefer, "A new look at computational time reversal in TLM," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 1-4, Pavia, Italy, May 2014.
doi:10.1109/nemo.2014.6995669

108. So, Poman P. M. and Wolfgang J. R. Hoefer, "Source reconstruction with superresolution using TLM time reversal," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, Tampa, FL, USA, Jun. 2014.
doi:10.1109/mwsym.2014.6848292

109. Hoefer, Wolfgang J. R. and Poman P. M. So, "Reconstruction of non-simultaneous impulsive sources with superresolution in TLM by computational time reversal," 2015 IEEE MTT-S International Microwave Symposium, 1-3, Phoenix, AZ, USA, May 2015.
doi:10.1109/mwsym.2015.7167031

110. Hoefer, Wolfgang J. R., "Superresolution imaging by computational time reversal in scattering media," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1302-1303, Vancouver, BC, Canada, Jul. 2015.
doi:10.1109/aps.2015.7305040

111. Hoefer, Wolfgang J. R., "Computational time reversal --- A frontier in electromagnetic structure synthesis and design," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 3-10, Jan. 2015.
doi:10.1109/tmtt.2014.2373367

112. Hoefer, Wolfgang J. R. and Poman P. M. So, "A scattering slab and time reversal make a computational superlens," 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-3, Ottawa, ON, Canada, Aug. 2015.
doi:10.1109/nemo.2015.7415052

113. Cozza, Andrea, "Emulating an anechoic environment in a wave-diffusive medium through an extended time-reversal approach," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3838-3852, Aug. 2012.
doi:10.1109/tap.2012.2201097

114. Maisto, Maria Antonia, Mario Del Prete, Antonio Cuccaro, and Raffaele Solimene, "Near-field phased array diagnostics by a subspace projection method," IEEE Access, Vol. 12, 80283-80299, 2024.
doi:10.1109/access.2024.3409936

115. Taddese, Biniyam Tesfaye, Gabriele Gradoni, Franco Moglie, Thomas M. Antonsen, Edward Ott, and Steven M. Anlage, "Quantifying volume changing perturbations in a wave chaotic system," New Journal of Physics, Vol. 15, No. 2, 023025, Feb. 2013.
doi:10.1088/1367-2630/15/2/023025

116. Chabalko, Matthew J. and Alanson P. Sample, "Electromagnetic time reversal focusing of near field waves in metamaterials," Applied Physics Letters, Vol. 109, No. 26, 263901, Dec. 2016.
doi:10.1063/1.4973210

117. Cheng, Zi-Han, Tao Li, Lin Hu, Xin Ma, Feng Liang, Deshuang Zhao, and Bing-Zhong Wang, "Selectively powering multiple small-size devices spaced at diffraction limited distance with point-focused electromagnetic waves," IEEE Transactions on Industrial Electronics, Vol. 69, No. 12, 13696-13705, Dec. 2022.
doi:10.1109/tie.2021.3135607

118. Twumasi, Baidenger Agyekum, Jia-Lin Li, Faith Kwaku Deynu, Ebenezer Tawiah Ashong, Christian Dzah, and Dustin Pomary, "Selective microwave wireless power transfer to sensors embeddedin concrete at sub-wavelength spacing using electromagnetictime-reversal technique," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 4, 364-375, Apr. 2024.
doi:10.13052/2024.aces.j.390410

119. Bahrami, Siroos, Ahmad Cheldavi, and Ali Abdolali, "Moving target tracking using time reversal method," Progress In Electromagnetics Research M, Vol. 25, 39-52, 2012.
doi:10.2528/pierm12041801

120. Fouda, Ahmed E. and Fernando L. Teixeira, "Imaging and tracking of targets in clutter using differential time-reversal techniques," Waves in Random and Complex Media, Vol. 22, No. 1, 66-108, 2012.
doi:10.1080/17455030.2011.557404

121. De Arriba-Ruiz, Imanol, Jose M. Muñoz-Ferreras, and Félix Pérez-Martínez, "Multipath mitigation techniques based on time reversal concept and superresolution algorithms for inverse synthetic aperture radar imaging," IET Radar, Sonar & Navigation, Vol. 7, No. 4, 413-421, 2013.
doi:10.1049/iet-rsn.2012.0261

122. Yu, Zhiru, Jin Pan, Deqiang Yang, and Xuan Xie, "Time-divided multi-channel technique for EM-TRM based object detection system in complex environment," 2009 Asia Pacific Microwave Conference, 2328-2331, Singapore, Dec. 2009.
doi:10.1109/apmc.2009.5385451

123. Karami, Hamidreza, André Koch, Carlos Romero, Marcos Rubinstein, and Farhad Rachidi, "Landmine detection using electromagnetic time reversalbased methods: 1. Classical TR, iterative TR, DORT and TR-MUSIC," Radio Science, Vol. 59, No. 10, 1-13, 2024.
doi:10.1029/2024rs007971

124. Karami, Hamidreza, André Koch, Carlos Romero, Marcos Rubinstein, and Farhad Rachidi, "Landmine detection using electromagnetic time reversal-based methods: 2. Performance analysis of TR-MUSIC," Radio Science, Vol. 59, No. 10, e2024RS007972, 2024.
doi:10.1029/2024rs007972

125. Liu, Xiao-Fei, Bing-Zhong Wang, and Shao-Qiu Xiao, "Electromagnetic subsurface detection using subspace signal processing and half-space dyadic Green's function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/pier09092902

126. Zhang, Wenji, Ahmad Hoorfar, and Lim Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/pier10052408

127. Mukherjee, Saptarshi, Zhiyi Su, Lalita Udpa, Satish Udpa, and Antonello Tamburrino, "Enhancement of microwave imaging using a metamaterial lens," IEEE Sensors Journal, Vol. 19, No. 13, 4962-4971, Jul. 2019.
doi:10.1109/jsen.2019.2903454

128. Mukherjee, Saptarshi, Xiaodong Shi, Srijan Datta, Yiming Deng, Satish Udpa, and Lalita Udpa, "Enhancement of microwave time reversal imaging using metallic reflectors," NDT & E International, Vol. 110, 102192, Mar. 2020.
doi:10.1016/j.ndteint.2019.102192

129. Tian, Shan, Xiaoqing Yang, Huajiang Peng, Ting Zhang, Feng Gao, and Jieping Wu, "Frequency domain time reversal adaptive focusing on nondestructive testing imaging method for composite materials," Journal of Nondestructive Evaluation, Vol. 44, No. 3, 82, 2025.
doi:10.1007/s10921-025-01218-5

130. Hossain, Md. Delwar, Ananda Sanagavarapu Mohan, and Mohammed Jainul Abedin, "Beamspace time-reversal microwave imaging for breast cancer detection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 241-244, 2013.
doi:10.1109/lawp.2013.2247018

131. Hossain, Md. Delwar and Ananda Sanagavarapu Mohan, "Cancer detection in highly dense breasts using coherently focused time-reversal microwave imaging," IEEE Transactions on Computational Imaging, Vol. 3, No. 4, 928-939, Dec. 2017.
doi:10.1109/tci.2017.2737947

132. Fasoula, A., B. M. Moloney, L. Duchesne, J. D. Gil Cano, B. L. Oliveira, J.-G. Bernard, and M. J. Kerin, "Super-resolution radar imaging for breast cancer detection with microwaves: The integrated information selection criteria," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1868-1874, Berlin, Germany, Jul. 2019.
doi:10.1109/embc.2019.8857924

133. Twumasi, Baidenger Agyekum, Jia-Lin Li, and Christian Dzah, "Sensitivity enhancement of super resolution breast tumour imaging with far-field time reversal mirror integrating with multi-layered sub-wavelength patch scatterers," Journal of Physics D: Applied Physics, Vol. 53, No. 7, 075401, Dec. 2019.
doi:10.1088/1361-6463/ab56b0

134. Twumasi, Baidenger Agyekum, Jia-Lin Li, Ebenezer Tawiah Ashong, Christian Dzah, and Dustin Pomary, "Time reversal mirror for hyperthermia of multi-focal breast tumors using electromagnetic time reversal technique," Electromagnetics, Vol. 42, No. 8, 594-615, 2022.
doi:10.1080/02726343.2022.2161707

135. Wu, Crystal T., Nuno M. Nobre, Emmanuel Fort, Graham D. Riley, and Fumie Costen, "Tailoring instantaneous time mirrors for time reversal focusing in absorbing media," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9630-9640, Oct. 2022.
doi:10.1109/tap.2022.3184482

136. Casu, Mario R., Marco Vacca, Jorge A. Tobon, Azzurra Pulimeno, Imran Sarwar, Raffaele Solimene, and Francesca Vipiana, "A COTS-based microwave imaging system for breast-cancer detection," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 804-814, Aug. 2017.
doi:10.1109/tbcas.2017.2703588

137. Hajiahmadi, Mohamad J., Reza Faraji-Dana, and Christophe Caloz, "Metasurface-based time-reversal focusing for brain tumor microwave hyperthermia," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 12237-12246, Dec. 2022.
doi:10.1109/tap.2022.3210691

138. Henty, Benjamin E. and Daniel D. Stancil, "Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays," Physical Review Letters, Vol. 93, No. 24, 243904, Dec. 2004.
doi:10.1103/physrevlett.93.243904

139. Borcea, Liliana, George Papanicolaou, and Chrysoula Tsogka, "Theory and applications of time reversal and interferometric imaging," Inverse Problems, Vol. 19, No. 6, S139, Nov. 2003.
doi:10.1088/0266-5611/19/6/058

140. Zakeri, M. Javad and Sajjad Sadeghi, "Electromagnetic time-reversal positioning of a single user in a street canyon scenario," Journal of Electromagnetic Waves and Applications, Vol. 39, No. 13, 1600-1618, Jun. 2025.
doi:10.1080/09205071.2025.2524399

141. Liu, Jia, Deshuang Zhao, Bing-Zhong Wang, Junhua Dou, and Guangding Ge, "Time-reversal method for coexistence between ultrawideband radios and IEEE802.11a systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 1065-1071, Nov. 2011.
doi:10.1109/temc.2011.2160454

142. Guo, Zheng, Zihan Cheng, Lin Chen, and Deshuang Zhao, "Resolution-enhanced and accurate cascade time-reversal operator decomposition (C-DORT) approach for positioning radiated passive intermodulation sources," Electronics, Vol. 12, No. 9, 2104, 2023.
doi:10.3390/electronics12092104

143. Ge, Guang-Ding, Bing-Zhong Wang, Duo Wang, Deshuang Zhao, and Shuai Ding, "Subwavelength array of planar monopoles with complementary split rings based on far-field time reversal," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4345-4350, Nov. 2011.
doi:10.1109/tap.2011.2164190

144. Wang, Ren, Bing-Zhong Wang, Zhi-Shuang Gong, and Xiao Ding, "Compact multiport antenna with radiator-sharing approach and its performance evaluation of time reversal in an intra-car environment," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4213-4219, Sep. 2015.
doi:10.1109/tap.2015.2448799

145. Colton, David and Rainer Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer, Cham, Switzerland, 2019.
doi:10.1007/978-1-4614-4942-3

146. Le Boudec, Elias, Chaouki Kasmi, Nicolas Mora, Farhad Rachidi, Emanuela Radici, Marcos Rubinstein, and Felix Vega, "The time-domain Cartesian multipole expansion of electromagnetic fields," Scientific Reports, Vol. 14, No. 1, 8084, Apr. 2024.
doi:10.1038/s41598-024-58570-1

147. Le Boudec, E., Eliasleb/Subwavelength_emtr_review: Zenodov2 version v2. Zenodo, https://doi.org/10.5281/zenodo.15944905, Jul. 2025.