1. Stanley, Ross, "Plasmonics in the mid-infrared," Nature Photonics, Vol. 6, No. 7, 409-411, 2012.
doi:10.1038/nphoton.2012.161 Google Scholar
2. Brolo, Alexandre G., "Plasmonics for future biosensors," Nature Photonics, Vol. 6, No. 11, 709-713, 2012.
doi:10.1038/nphoton.2012.266 Google Scholar
3. Li, Shasha, Yini Fang, and Jianfang Wang, "Control of light-matter interactions in two-dimensional materials with nanoparticle-on-mirror structures," Opto-Electronic Science, Vol. 3, No. 7, 240011, 2024.
doi:10.29026/oes.2024.240011 Google Scholar
4. Chen, Yuxiang, Fengyu Zhang, Zhibo Dang, Xiao He, Chunxiong Luo, Zhengchang Liu, Pu Peng, Yuchen Dai, Yijing Huang, Yu Li, and Zheyu Fang, "Chiral detection of biomolecules based on reinforcement learning," Opto-Electronic Science, Vol. 2, No. 1, 220019-1-220019-10, 2023.
doi:10.29026/oes.2023.220019 Google Scholar
5. Lochbihler, Hans and Ricardo Depine, "Highly conducting wire gratings in the resonance region," Applied Optics, Vol. 32, No. 19, 3459-3465, 1993.
doi:10.1364/ao.32.003459 Google Scholar
6. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570 Google Scholar
7. Ghaemi, H. F., Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical Review B, Vol. 58, No. 11, 6779-6782, Sep. 1998.
doi:10.1103/physrevb.58.6779 Google Scholar
8. Grupp, Daniel E., Henri J. Lezec, Tineke Thio, and Thomas W. Ebbesen, "Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture," Advanced Materials, Vol. 11, No. 10, 860-862, 1999. Google Scholar
9. Qi, Xiaoyu, Luis Alberto Pérez, Maria Isabel Alonso, and Agustín Mihi, "High Q-factor plasmonic surface lattice resonances in colloidal nanoparticle arrays," ACS Applied Materials & Interfaces, Vol. 16, No. 1, 1259-1267, 2024.
doi:10.1021/acsami.3c08617 Google Scholar
10. Bin-Alam, M. Saad, Orad Reshef, Yaryna Mamchur, M. Zahirul Alam, Graham Carlow, Jeremy Upham, Brian T. Sullivan, Jean-Michel Ménard, Mikko J. Huttunen, Robert W. Boyd, and Ksenia Dolgaleva, "Ultra-high-Q resonances in plasmonic metasurfaces," Nature Communications, Vol. 12, No. 1, 974, Feb. 2021.
doi:10.1038/s41467-021-21196-2 Google Scholar
11. Ou, Chunhui, Jian Wang, Changzheng Sun, Zhibiao Hao, Yanjun Han, Bing Xiong, Lai Wang, Hongtao Li, Jiadong Yu, and Yi Luo, "A high-Q mid-infrared Tamm plasmon absorber using MgF2 and Ge aperiodic tandem films designed by the genetic algorithm," AIP Advances, Vol. 12, No. 3, 035052, 2022.
doi:10.1063/5.0086863 Google Scholar
12. Xi, Wang, Yida Liu, Jinlin Song, Run Hu, and Xiaobing Luo, "High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics," Optics Letters, Vol. 46, No. 4, 888-891, 2021.
doi:10.1364/ol.417378 Google Scholar
13. Biswas, Shovasis Kumar, Wihan Adi, Aidana Beisenova, Samir Rosas, Eduardo Romero Arvelo, and Filiz Yesilkoy, "From weak to strong coupling: Quasi-BIC metasurfaces for mid-infrared light-matter interactions," Nanophotonics, Vol. 13, No. 16, 2937-2949, 2024.
doi:10.1515/nanoph-2024-0043 Google Scholar
14. Liang, Yao, Din Ping Tsai, and Yuri Kivshar, "From local to nonlocal high-Q plasmonic metasurfaces," Physical Review Letters, Vol. 133, No. 5, 053801, Jul. 2024.
doi:10.1103/PhysRevLett.133.053801 Google Scholar
15. Park, Junghyun, Ju-Hyung Kang, Xiaoge Liu, Scott J. Maddox, Kechao Tang, Paul C. McIntyre, Seth R. Bank, and Mark L. Brongersma, "Dynamic thermal emission control with InAs-based plasmonic metasurfaces," Science Advances, Vol. 4, No. 12, eaat3163, 2018.
doi:10.1126/sciadv.aat3163 Google Scholar
16. Kim, Seyoon, Min Seok Jang, Victor W. Brar, Kelly W. Mauser, Laura Kim, and Harry A. Atwater, "Electronically tunable perfect absorption in graphene," Nano Letters, Vol. 18, No. 2, 971-979, 2018.
doi:10.1021/acs.nanolett.7b04393 Google Scholar
17. Law, S., D. C. Adams, A. M. Taylor, and D. Wasserman, "Mid-infrared designer metals," Optics Express, Vol. 20, No. 11, 12155-12165, 2012.
doi:10.1364/oe.20.012155 Google Scholar
18. Zhong, Yujun, Shyamala Devi Malagari, Travis Hamilton, and Daniel M. Wasserman, "Review of mid-infrared plasmonic materials," Journal of Nanophotonics, Vol. 9, No. 1, 093791, 2015.
doi:10.1117/1.jnp.9.093791 Google Scholar
19. Luo, Xiangang, "Principles of electromagnetic waves in metasurfaces," Science China Physics, Mechanics & Astronomy, Vol. 58, No. 9, 594201, Sep. 2015.
doi:10.1007/s11433-015-5688-1 Google Scholar
20. Guo, Yinghui, Xiaoliang Ma, Mingbo Pu, Xiong Li, Zeyu Zhao, and Xiangang Luo, "High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens," Advanced Optical Materials, Vol. 6, No. 19, 1800592, 2018.
doi:10.1002/adom.201800592 Google Scholar
21. Fang, Jie, Rui Chen, David Sharp, Enrico M. Renzi, Arnab Manna, Abhinav Kala, Sander A. Mann, Kan Yao, Christopher Munley, Hannah Rarick, et al., "Million-Q free space meta-optical resonator at near-visible wavelengths," Nature Communications, Vol. 15, No. 1, 10341, Nov. 2024.
doi:10.1038/s41467-024-54775-0 Google Scholar
22. Hsu, Chia Wei, Bo Zhen, A. Douglas Stone, John D. Joannopoulos, and Marin Soljačić, "Bound states in the continuum," Nature Reviews Materials, Vol. 1, No. 9, 16048, Jul. 2016.
doi:10.1038/natrevmats.2016.48 Google Scholar
23. Avrahamy, Roy, Benny Milgrom, Moshe Zohar, and Mark Auslender, "Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: Inverse design, analysis, and applications," Nanoscale, Vol. 13, 11455-11469, 2021.
doi:10.1039/d1nr02814f Google Scholar
24. Watanabe, Keisuke, Tadaaki Nagao, and Masanobu Iwanaga, "Low-contrast BIC metasurfaces with quality factors exceeding 100,000," Nano Letters, Vol. 25, No. 7, 2777-2784, 2025.
doi:10.1021/acs.nanolett.4c05880 Google Scholar
25. Porto, J. A., F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Physical Review Letters, Vol. 83, No. 14, 2845-2848, Oct. 1999.
doi:10.1103/physrevlett.83.2845 Google Scholar
26. De Abajo, F. J. García, "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, No. 4, 1267-1290, Oct. 2007.
doi:10.1103/revmodphys.79.1267 Google Scholar
27. Lalanne, P., J. P. Hugonin, H. T. Liu, and B. Wang, "A microscopic view of the electromagnetic properties of sub-λ metallic surfaces," Surface Science Reports, Vol. 64, No. 10, 453-469, 2009.
doi:10.1016/j.surfrep.2009.07.003 Google Scholar
28. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, Mar. 2010.
doi:10.1103/revmodphys.82.729 Google Scholar
29. Law, Stephanie, Viktor Podolskiy, and Daniel Wasserman, "Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics," Nanophotonics, Vol. 2, No. 2, 103-130, 2013.
doi:10.1515/nanoph-2012-0027 Google Scholar
30. Rodrigo, Sergio G., Fernando de León-Pérez, and Luis Martín-Moreno, "Extraordinary optical transmission: Fundamentals and applications," Proceedings of the IEEE, Vol. 104, No. 12, 2288-2306, Dec. 2016.
doi:10.1109/jproc.2016.2580664 Google Scholar
31. Liu, Haitao and Philippe Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, No. 7188, 728-731, 2008.
doi:10.1038/nature06762 Google Scholar
32. Liu, Haitao and Philippe Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," Journal of the Optical Society of America A, Vol. 27, No. 12, 2542-2550, 2010.
doi:10.1364/josaa.27.002542 Google Scholar
33. Cao, Qing and Philippe Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Physical Review Letters, Vol. 88, No. 5, 057403, Jan. 2002.
doi:10.1103/physrevlett.88.057403 Google Scholar
34. Lochbihler, Hans and Ricardo A. Depine, "Properties of TM resonances on metallic slit gratings," Applied Optics, Vol. 51, No. 11, 1729-1741, 2012.
doi:10.1364/ao.51.001729 Google Scholar
35. Babar, Shaista and J. H. Weaver, "Optical constants of Cu, Ag, and Au revisited," Applied Optics, Vol. 54, No. 3, 477-481, 2015.
doi:10.1364/ao.54.000477 Google Scholar
36. Franta, Daniel, David Nečas, Angelo Giglia, Pavel Franta, and Ivan Ohlídal, "Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride," Applied Surface Science, Vol. 421, 424-429, 2017.
doi:10.1016/j.apsusc.2016.09.149 Google Scholar
37. "Magnesium fluoride (MgF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/magnesium-fluoride-mgf2, transmission 0.12-7 µm, Aug. 2025.
38. Li, H. H., "Refractive index of alkaline earth halides and its wavelength and temperature derivatives," Journal of Physical and Chemical Reference Data, Vol. 9, No. 1, 161-290, 1980.
doi:10.1063/1.555616 Google Scholar
39. "TeflonTM AF amorphous fluoroplastic resins: Product information," https://www.teflon.com/en/-/media/files/teflon/teflon-af-product-info.pdf, optical transmission from IR to UV; n ≈ 1.29-1.31, Aug. 2025.
40. "Teflon® AF overview (AF1600/AF2400)," https://www.professionalplastics.com/professionalplastics/content/downloads/TeflonAF16002400Data.pdf, processing/use temperature guidance; decomposition > 360˚C, Aug. 2025.
41. "Calcium fluoride (CaF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/calcium-fluoride-caf2, Aug. 2025.
42. "Calcium fluoride windows --- Transmission and specs," https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3978, Aug. 2025.
43. Crystal GmbH, "Barium Fluoride (BaF2) Optical Data," https://crystal-gmbh.com/shared/downloads/datenblaetter/optics_de/Bariumfluorid_Barium_Fluoride_BaF2.pdf, datasheet.
44. ISP Optics, "Barium Fluoride (BaF2) Transmission Curve Datasheet," https://www.lakeshore.com/docs/default-source/default-document-library/barium-fluoride-baf2-transmission-curve-datasheet.pdf, hosted by Lake Shore Cryotronics.
45. "Barium fluoride (BaF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/barium-fluoride-baf2, transmission 0.15-12 µm, Aug. 2025.
46. "Cryolite patinal® (Na3AlF6) thin-film data sheet," https://www.merckgroup.com/Products/PM/global/106457_Na3AlF6_tcm20 33-en.pdf, transparency ∼200 nm-14 µm; thin-film n ≈ 1.32-1.35, Aug. 2025.
47. Lalanne, P., C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Physical Review B, Vol. 68, No. 12, 125404, Sep. 2003.
doi:10.1103/physrevb.68.125404 Google Scholar
48. Alù, Andrea, "Restoring the physical meaning of metamaterial constitutive parameters," Physical Review B, Vol. 83, 081102, 2011.
doi:10.1103/physrevb.83.081102 Google Scholar
49. Alù, Andrea, "First-principles homogenization theory for periodic metamaterials," Physical Review B, Vol. 84, No. 7, 075153, 2011.
doi:10.1103/PhysRevB.84.075153 Google Scholar
50. Caloz, Christophe, Andrea Alù, Sergei Tretyakov, Dimitrios Sounas, Karim Achouri, and Zoé-Lise Deck-Léger, "Electromagnetic nonreciprocity," Physical Review Applied, Vol. 10, No. 4, 047001, 2018.
doi:10.1103/physrevapplied.10.047001 Google Scholar
51. Miri, Mohammad-Ali, Freek Ruesink, Ewold Verhagen, and Andrea Alù, "Optical nonreciprocity based on optomechanical coupling," Physical Review Applied, Vol. 7, No. 6, 064014, 2017.
doi:10.1103/physrevapplied.7.064014 Google Scholar
52. Wang, Xuchen, Ana Díaz-Rubio, Huanan Li, Sergei A. Tretyakov, and Andrea Alù, "Theory and design of multifunctional space-time metasurfaces," Physical Review Applied, Vol. 13, No. 4, 044040, 2020.
doi:10.1103/physrevapplied.13.044040 Google Scholar
53. Strelniker, Yakov M. and David J. Bergman, "Itinerant versus localized plasmons in an assembly of metal-dielectric parallel flat slabs in the presence of a perpendicular magnetic field: Faraday and magneto-optical Kerr effects," Physical Review B, Vol. 103, No. 20, 205302, May 2021.
doi:10.1103/physrevb.103.205302 Google Scholar
54. Strelniker, Yakov M. and David J. Bergman, "Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field," Physical Review B, Vol. 59, No. 20, R12763, May 1999.
doi:10.1103/physrevb.59.r12763 Google Scholar
55. Liu, Na, Hongcang Guo, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, No. 1, 31-37, 2008.
doi:10.1038/nmat2072 Google Scholar
56. Chang, Zhiyu, Rixing Huang, Ping Chen, and Guangyuan Li, "Shaping light with multilayer metasurfaces: Design, fabrication, and applications," Journal of Physics D: Applied Physics, Vol. 58, No. 44, 443003, Oct. 2025.
doi:10.1088/1361-6463/ae0e80 Google Scholar
57. ASML, ASML TWINSCAN NXT: 1980Di Immersion Scanner Datasheet, dedicated Chuck Overlay ≤ 2.5 nm, [Online]. Available: https://www.asml.com/en/products/duv-lithography-systems, 2024.
58. Traub, Matthew C., Whitney Longsine, and Van N. Truskett, "Advances in nanoimprint lithography," Annual Review of Chemical and Biomolecular Engineering, Vol. 7, No. 1, 583-604, 2016.
doi:10.1146/annurev-chembioeng-080615-034635 Google Scholar
59. Einck, Vincent J., Mahsa Torfeh, Andrew McClung, Dae Eon Jung, Mahdad Mansouree, Amir Arbabi, and James J. Watkins, "Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms," ACS Photonics, Vol. 8, No. 8, 2400-2409, 2021.
doi:10.1021/acsphotonics.1c00609 Google Scholar
60. Cox, Lewis M., Alina M. Martinez, Adrienne K. Blevins, Nancy Sowan, Yifu Ding, and Christopher N. Bowman, "Nanoimprint lithography: Emergent materials and methods of actuation," Nano Today, Vol. 31, 100838, 2020.
doi:10.1016/j.nantod.2019.100838 Google Scholar
61. Shudo, Shinichi, Hirotoshi Torii, Yoshio Suzaki, Atsushi Kimura, Kiyohito Yamamoto, Mitsuru Hiura, Keita Sakai, and Yukio Takabayashi, "Nanoimprint performance improvements for high volume semiconductor device manufacturing," Photomask Japan 2024: XXX Symposium on Photomask and Next-Generation Lithography Mask Technology, Vol. 13177, 42-49, Japan, 2024.
doi:10.1117/12.3034104
62. Xu, Han-Lei, Zi-Ming Meng, Yuan-Hao Liu, Jin-Yue Su, Ze-Zhou Fang, and Jin-Yun Zhou, "Mid-infrared bifunctional high-Q plasmonic metasurfaces with strong intrinsic chirality and imaging-based biosensing," Journal of Materials Chemistry C, 2025.
doi:10.1039/d5tc00996k Google Scholar
63. Liu, Lu, Zhe Li, Changyin Cai, Weiming Zhu, Xiaojia Zheng, Wenhua Zhang, Jimmy Xu, and Zhijun Liu, "High-Q hybridized resonance in a plasmonic metasurface of asymmetric aligned magnetic dipoles," Applied Physics Letters, Vol. 117, No. 8, 081108, 2020.
doi:10.1063/5.0014311 Google Scholar
64. Xing, Li, Qiqige Wulan, Jiachen Yu, and Zhijun Liu, "Plasmonic anapole mode in a mid-infrared metasurface with improved quality factor," Plasmonics, Vol. 20, No. 6, 3733-3740, 2025.
doi:10.1007/s11468-024-02594-w Google Scholar
65. Dayal, Govind, Ankur Solanki, Xin Yu Chin, Tze Chien Sum, Cesare Soci, and Ranjan Singh, "High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites," Journal of Applied Physics, Vol. 122, No. 7, 073101, 2017.
doi:10.1063/1.4997442 Google Scholar
66. Yi, Soongyu, Ming Zhou, Zongfu Yu, Pengyu Fan, Nader Behdad, Dianmin Lin, Ken Xingze Wang, Shanhui Fan, and Mark Brongersma, "Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals," Nature Nanotechnology, Vol. 13, No. 12, 1143-1147, 2018.
doi:10.1038/s41565-018-0278-9 Google Scholar
67. Avrahamy, Roy, Moshe Zohar, Benny Milgrom, and Mark Auslender, "Mid-infrared photodetector spectrometer concept based on ultrathin all-dielectric metamaterial with azimuth-incidence-angle tuned perfect optical absorption: Design and analysis," Materials & Design, Vol. 245, 113298, 2024.
doi:10.1016/j.matdes.2024.113298 Google Scholar
68. Wang, Zhu, Soongyu Yi, Ang Chen, Ming Zhou, Ting Shan Luk, Anthony James, John Nogan, Willard Ross, Graham Joe, Alireza Shahsafi, Ken Xingze Wang, Mikhail A. Kats, and Zongfu Yu, "Single-shot on-chip spectral sensors based on photonic crystal slabs," Nature Communications, Vol. 10, No. 1, 1020, Mar. 2019.
doi:10.1038/s41467-019-08994-5 Google Scholar
69. Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics, Vol. 82, No. 3, 2257-2298, Aug. 2010.
doi:10.1103/revmodphys.82.2257 Google Scholar
70. Andrewartha, J. R., G. H. Derrick, and R. C. McPhedran, "A general modal theory for reflection gratings," Optica Acta: International Journal of Optics, Vol. 28, No. 11, 1501-1516, 1981.
doi:10.1080/713820488 Google Scholar
71. Sheng, Ping, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations," Physical Review B, Vol. 26, No. 6, 2907-2916, Sep. 1982.
doi:10.1103/physrevb.26.2907 Google Scholar
72. Li, Lifeng, "A modal analysis of lamellar diffraction gratings in conical mountings," Journal of Modern Optics, Vol. 40, No. 4, 553-573, 1993.
doi:10.1080/09500349314550631 Google Scholar
73. Auslender, Mark and Shlomo Hava, "Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures," Optics Letters, Vol. 21, No. 21, 1765-1767, 1996.
doi:10.1364/ol.21.001765 Google Scholar
74. Lalanne, Philippe and G. Michael Morris, "Highly improved convergence of the coupled-wave method for TM polarization," Journal of the Optical Society of America A, Vol. 13, No. 4, 779-784, 1996.
doi:10.1364/josaa.13.000779 Google Scholar
75. Granet, G. and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," Journal of the Optical Society of America A, Vol. 13, No. 5, 1019-1023, 1996.
doi:10.1364/josaa.13.001019 Google Scholar
76. Li, Lifeng, "Use of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A, Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/josaa.13.001870 Google Scholar
77. Li, Lifeng, "Mathematical reflections on the Fourier modal method in grating theory," Mathematical Modeling in Optical Science, 111-139, G. Bao, L. Cowsar, and W. Masters, Ed., SIAM, Philadelphia, 2001.
78. Li, Lifeng, "New formulation of the Fourier modal method for crossed surface-relief gratings," Journal of the Optical Society of America A, Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1364/josaa.14.002758 Google Scholar
79. Popov, Evgeny and Michel Nevière, "Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," Journal of the Optical Society of America A, Vol. 18, No. 11, 2886-2894, 2001.
doi:10.1364/josaa.18.002886 Google Scholar
80. Popov, Evgeni, "Differential method for periodic structures," Gratings: Theory and Numeric Applications, Second Revisited Edition, 7.1-7.57, E. Popov, Ed., AMU (PUP), Apr. 2014.
81. Schuster, Thomas, Johannes Ruoff, Norbert Kerwien, Stephan Rafler, and Wolfgang Osten, "Normal vector method for convergence improvement using the RCWA for crossed gratings," Journal of the Optical Society of America A, Vol. 24, No. 9, 2880-2890, 2007.
doi:10.1364/josaa.24.002880 Google Scholar
82. Martí, Rafael, "Multi-start methods," Handbook of Metaheuristics, 355-368, F. Glover and G. A. Kochenberger, Eds., Springer US, Boston, MA, 2003.
83. Ugray, Zsolt, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael Martí, "Scatter search and local NLP solvers: A multistart framework for global optimization," INFORMS Journal on Computing, Vol. 19, No. 3, 313-484, 2007.
doi:10.1287/ijoc.1060.0175 Google Scholar
84. "Matlab R2019a and Optimization Toolbox 8.3," The MathWorks, Inc., Natick, MA, USA, 2019.