Vol. 184
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-12-23
Decoupled-Mode Plasmonic Metamaterials for Ultra-High-q Tailored Mid-Infrared Extraordinary Optical Transmission
By
Progress In Electromagnetics Research, Vol. 184, 79-97, 2025
Abstract
Plasmonic designs for mid-infrared extraordinary optical transmission (EOT), a direct route to tailored filtering with broadband out-of-band rejection, have long been constrained by a fundamental trade-off between high transmission efficiency and narrow linewidths, a challenge rooted in the material properties of noble metals. Here, we theoretically propose and numerically demonstrate a versatile design paradigm that resolves this challenge by functionally decoupling the tasks of light coupling and resonant filtering. Our approach uses a dual-stacked noble metal-dielectric grating architecture to surpass the intrinsic limitations of single-layer structures. This paradigm provides the flexibility to engineer devices for ultra-high spectral selectivity and transmission efficiency. We demonstrate this with distinct designs: one at 10 μm with a quality factor (Q-factor) >2000 and >91% transmission; a high-Q design at 4 μm and >80% transmission; and a high-efficiency design at 4 μm with >92% transmission over a uniquely broad spectral-angular range. These generic designs produce solitary, narrow EOT peaks originating from a ``triple-coupling'' mechanism that mitigates reflection and absorption losses, with symmetry-broken configurations capable of exceeding Q-factors of 16,000 while maintaining a peak transmission efficiency > 60%. Crucially, these compact two-layer designs exhibit exceptional robustness against fabrication variations, offering a broadly applicable route to ultra-compact, low-cost infrared components, enabling advanced architectures such as angular sensing, spectro-polarimetric imaging, and isotope-resolved gas diagnostics.
Supplementary Information
Citation
Roy Avrahamy, Mark Auslender, Moshe Zohar, Amiel Avraham Ishaaya, and Benjamin Milgrom, "Decoupled-Mode Plasmonic Metamaterials for Ultra-High-q Tailored Mid-Infrared Extraordinary Optical Transmission," Progress In Electromagnetics Research, Vol. 184, 79-97, 2025.
doi:10.2528/PIER25091801
References

1. Stanley, Ross, "Plasmonics in the mid-infrared," Nature Photonics, Vol. 6, No. 7, 409-411, 2012.
doi:10.1038/nphoton.2012.161

2. Brolo, Alexandre G., "Plasmonics for future biosensors," Nature Photonics, Vol. 6, No. 11, 709-713, 2012.
doi:10.1038/nphoton.2012.266

3. Li, Shasha, Yini Fang, and Jianfang Wang, "Control of light-matter interactions in two-dimensional materials with nanoparticle-on-mirror structures," Opto-Electronic Science, Vol. 3, No. 7, 240011, 2024.
doi:10.29026/oes.2024.240011

4. Chen, Yuxiang, Fengyu Zhang, Zhibo Dang, Xiao He, Chunxiong Luo, Zhengchang Liu, Pu Peng, Yuchen Dai, Yijing Huang, Yu Li, and Zheyu Fang, "Chiral detection of biomolecules based on reinforcement learning," Opto-Electronic Science, Vol. 2, No. 1, 220019-1-220019-10, 2023.
doi:10.29026/oes.2023.220019

5. Lochbihler, Hans and Ricardo Depine, "Highly conducting wire gratings in the resonance region," Applied Optics, Vol. 32, No. 19, 3459-3465, 1993.
doi:10.1364/ao.32.003459

6. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570

7. Ghaemi, H. F., Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Physical Review B, Vol. 58, No. 11, 6779-6782, Sep. 1998.
doi:10.1103/physrevb.58.6779

8. Grupp, Daniel E., Henri J. Lezec, Tineke Thio, and Thomas W. Ebbesen, "Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture," Advanced Materials, Vol. 11, No. 10, 860-862, 1999.

9. Qi, Xiaoyu, Luis Alberto Pérez, Maria Isabel Alonso, and Agustín Mihi, "High Q-factor plasmonic surface lattice resonances in colloidal nanoparticle arrays," ACS Applied Materials & Interfaces, Vol. 16, No. 1, 1259-1267, 2024.
doi:10.1021/acsami.3c08617

10. Bin-Alam, M. Saad, Orad Reshef, Yaryna Mamchur, M. Zahirul Alam, Graham Carlow, Jeremy Upham, Brian T. Sullivan, Jean-Michel Ménard, Mikko J. Huttunen, Robert W. Boyd, and Ksenia Dolgaleva, "Ultra-high-Q resonances in plasmonic metasurfaces," Nature Communications, Vol. 12, No. 1, 974, Feb. 2021.
doi:10.1038/s41467-021-21196-2

11. Ou, Chunhui, Jian Wang, Changzheng Sun, Zhibiao Hao, Yanjun Han, Bing Xiong, Lai Wang, Hongtao Li, Jiadong Yu, and Yi Luo, "A high-Q mid-infrared Tamm plasmon absorber using MgF2 and Ge aperiodic tandem films designed by the genetic algorithm," AIP Advances, Vol. 12, No. 3, 035052, 2022.
doi:10.1063/5.0086863

12. Xi, Wang, Yida Liu, Jinlin Song, Run Hu, and Xiaobing Luo, "High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics," Optics Letters, Vol. 46, No. 4, 888-891, 2021.
doi:10.1364/ol.417378

13. Biswas, Shovasis Kumar, Wihan Adi, Aidana Beisenova, Samir Rosas, Eduardo Romero Arvelo, and Filiz Yesilkoy, "From weak to strong coupling: Quasi-BIC metasurfaces for mid-infrared light-matter interactions," Nanophotonics, Vol. 13, No. 16, 2937-2949, 2024.
doi:10.1515/nanoph-2024-0043

14. Liang, Yao, Din Ping Tsai, and Yuri Kivshar, "From local to nonlocal high-Q plasmonic metasurfaces," Physical Review Letters, Vol. 133, No. 5, 053801, Jul. 2024.
doi:10.1103/PhysRevLett.133.053801

15. Park, Junghyun, Ju-Hyung Kang, Xiaoge Liu, Scott J. Maddox, Kechao Tang, Paul C. McIntyre, Seth R. Bank, and Mark L. Brongersma, "Dynamic thermal emission control with InAs-based plasmonic metasurfaces," Science Advances, Vol. 4, No. 12, eaat3163, 2018.
doi:10.1126/sciadv.aat3163

16. Kim, Seyoon, Min Seok Jang, Victor W. Brar, Kelly W. Mauser, Laura Kim, and Harry A. Atwater, "Electronically tunable perfect absorption in graphene," Nano Letters, Vol. 18, No. 2, 971-979, 2018.
doi:10.1021/acs.nanolett.7b04393

17. Law, S., D. C. Adams, A. M. Taylor, and D. Wasserman, "Mid-infrared designer metals," Optics Express, Vol. 20, No. 11, 12155-12165, 2012.
doi:10.1364/oe.20.012155

18. Zhong, Yujun, Shyamala Devi Malagari, Travis Hamilton, and Daniel M. Wasserman, "Review of mid-infrared plasmonic materials," Journal of Nanophotonics, Vol. 9, No. 1, 093791, 2015.
doi:10.1117/1.jnp.9.093791

19. Luo, Xiangang, "Principles of electromagnetic waves in metasurfaces," Science China Physics, Mechanics & Astronomy, Vol. 58, No. 9, 594201, Sep. 2015.
doi:10.1007/s11433-015-5688-1

20. Guo, Yinghui, Xiaoliang Ma, Mingbo Pu, Xiong Li, Zeyu Zhao, and Xiangang Luo, "High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens," Advanced Optical Materials, Vol. 6, No. 19, 1800592, 2018.
doi:10.1002/adom.201800592

21. Fang, Jie, Rui Chen, David Sharp, Enrico M. Renzi, Arnab Manna, Abhinav Kala, Sander A. Mann, Kan Yao, Christopher Munley, Hannah Rarick, et al., "Million-Q free space meta-optical resonator at near-visible wavelengths," Nature Communications, Vol. 15, No. 1, 10341, Nov. 2024.
doi:10.1038/s41467-024-54775-0

22. Hsu, Chia Wei, Bo Zhen, A. Douglas Stone, John D. Joannopoulos, and Marin Soljačić, "Bound states in the continuum," Nature Reviews Materials, Vol. 1, No. 9, 16048, Jul. 2016.
doi:10.1038/natrevmats.2016.48

23. Avrahamy, Roy, Benny Milgrom, Moshe Zohar, and Mark Auslender, "Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: Inverse design, analysis, and applications," Nanoscale, Vol. 13, 11455-11469, 2021.
doi:10.1039/d1nr02814f

24. Watanabe, Keisuke, Tadaaki Nagao, and Masanobu Iwanaga, "Low-contrast BIC metasurfaces with quality factors exceeding 100,000," Nano Letters, Vol. 25, No. 7, 2777-2784, 2025.
doi:10.1021/acs.nanolett.4c05880

25. Porto, J. A., F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Physical Review Letters, Vol. 83, No. 14, 2845-2848, Oct. 1999.
doi:10.1103/physrevlett.83.2845

26. De Abajo, F. J. García, "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, No. 4, 1267-1290, Oct. 2007.
doi:10.1103/revmodphys.79.1267

27. Lalanne, P., J. P. Hugonin, H. T. Liu, and B. Wang, "A microscopic view of the electromagnetic properties of sub-λ metallic surfaces," Surface Science Reports, Vol. 64, No. 10, 453-469, 2009.
doi:10.1016/j.surfrep.2009.07.003

28. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, Mar. 2010.
doi:10.1103/revmodphys.82.729

29. Law, Stephanie, Viktor Podolskiy, and Daniel Wasserman, "Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics," Nanophotonics, Vol. 2, No. 2, 103-130, 2013.
doi:10.1515/nanoph-2012-0027

30. Rodrigo, Sergio G., Fernando de León-Pérez, and Luis Martín-Moreno, "Extraordinary optical transmission: Fundamentals and applications," Proceedings of the IEEE, Vol. 104, No. 12, 2288-2306, Dec. 2016.
doi:10.1109/jproc.2016.2580664

31. Liu, Haitao and Philippe Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, No. 7188, 728-731, 2008.
doi:10.1038/nature06762

32. Liu, Haitao and Philippe Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," Journal of the Optical Society of America A, Vol. 27, No. 12, 2542-2550, 2010.
doi:10.1364/josaa.27.002542

33. Cao, Qing and Philippe Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Physical Review Letters, Vol. 88, No. 5, 057403, Jan. 2002.
doi:10.1103/physrevlett.88.057403

34. Lochbihler, Hans and Ricardo A. Depine, "Properties of TM resonances on metallic slit gratings," Applied Optics, Vol. 51, No. 11, 1729-1741, 2012.
doi:10.1364/ao.51.001729

35. Babar, Shaista and J. H. Weaver, "Optical constants of Cu, Ag, and Au revisited," Applied Optics, Vol. 54, No. 3, 477-481, 2015.
doi:10.1364/ao.54.000477

36. Franta, Daniel, David Nečas, Angelo Giglia, Pavel Franta, and Ivan Ohlídal, "Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride," Applied Surface Science, Vol. 421, 424-429, 2017.
doi:10.1016/j.apsusc.2016.09.149

37. "Magnesium fluoride (MgF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/magnesium-fluoride-mgf2, transmission 0.12-7 µm, Aug. 2025.

38. Li, H. H., "Refractive index of alkaline earth halides and its wavelength and temperature derivatives," Journal of Physical and Chemical Reference Data, Vol. 9, No. 1, 161-290, 1980.
doi:10.1063/1.555616

39. "TeflonTM AF amorphous fluoroplastic resins: Product information," https://www.teflon.com/en/-/media/files/teflon/teflon-af-product-info.pdf, optical transmission from IR to UV; n ≈ 1.29-1.31, Aug. 2025.

40. "Teflon® AF overview (AF1600/AF2400)," https://www.professionalplastics.com/professionalplastics/content/downloads/TeflonAF16002400Data.pdf, processing/use temperature guidance; decomposition > 360˚C, Aug. 2025.

41. "Calcium fluoride (CaF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/calcium-fluoride-caf2, Aug. 2025.

42. "Calcium fluoride windows --- Transmission and specs," https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3978, Aug. 2025.

43. Crystal GmbH, "Barium Fluoride (BaF2) Optical Data," https://crystal-gmbh.com/shared/downloads/datenblaetter/optics_de/Bariumfluorid_Barium_Fluoride_BaF2.pdf, datasheet.

44. ISP Optics, "Barium Fluoride (BaF2) Transmission Curve Datasheet," https://www.lakeshore.com/docs/default-source/default-document-library/barium-fluoride-baf2-transmission-curve-datasheet.pdf, hosted by Lake Shore Cryotronics.

45. "Barium fluoride (BaF2) optical material --- Data sheet," https://www.crystran.com/optical-materials/barium-fluoride-baf2, transmission 0.15-12 µm, Aug. 2025.

46. "Cryolite patinal® (Na3AlF6) thin-film data sheet," https://www.merckgroup.com/Products/PM/global/106457_Na3AlF6_tcm20 33-en.pdf, transparency ∼200 nm-14 µm; thin-film n ≈ 1.32-1.35, Aug. 2025.

47. Lalanne, P., C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, "Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures," Physical Review B, Vol. 68, No. 12, 125404, Sep. 2003.
doi:10.1103/physrevb.68.125404

48. Alù, Andrea, "Restoring the physical meaning of metamaterial constitutive parameters," Physical Review B, Vol. 83, 081102, 2011.
doi:10.1103/physrevb.83.081102

49. Alù, Andrea, "First-principles homogenization theory for periodic metamaterials," Physical Review B, Vol. 84, No. 7, 075153, 2011.
doi:10.1103/PhysRevB.84.075153

50. Caloz, Christophe, Andrea Alù, Sergei Tretyakov, Dimitrios Sounas, Karim Achouri, and Zoé-Lise Deck-Léger, "Electromagnetic nonreciprocity," Physical Review Applied, Vol. 10, No. 4, 047001, 2018.
doi:10.1103/physrevapplied.10.047001

51. Miri, Mohammad-Ali, Freek Ruesink, Ewold Verhagen, and Andrea Alù, "Optical nonreciprocity based on optomechanical coupling," Physical Review Applied, Vol. 7, No. 6, 064014, 2017.
doi:10.1103/physrevapplied.7.064014

52. Wang, Xuchen, Ana Díaz-Rubio, Huanan Li, Sergei A. Tretyakov, and Andrea Alù, "Theory and design of multifunctional space-time metasurfaces," Physical Review Applied, Vol. 13, No. 4, 044040, 2020.
doi:10.1103/physrevapplied.13.044040

53. Strelniker, Yakov M. and David J. Bergman, "Itinerant versus localized plasmons in an assembly of metal-dielectric parallel flat slabs in the presence of a perpendicular magnetic field: Faraday and magneto-optical Kerr effects," Physical Review B, Vol. 103, No. 20, 205302, May 2021.
doi:10.1103/physrevb.103.205302

54. Strelniker, Yakov M. and David J. Bergman, "Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field," Physical Review B, Vol. 59, No. 20, R12763, May 1999.
doi:10.1103/physrevb.59.r12763

55. Liu, Na, Hongcang Guo, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, No. 1, 31-37, 2008.
doi:10.1038/nmat2072

56. Chang, Zhiyu, Rixing Huang, Ping Chen, and Guangyuan Li, "Shaping light with multilayer metasurfaces: Design, fabrication, and applications," Journal of Physics D: Applied Physics, Vol. 58, No. 44, 443003, Oct. 2025.
doi:10.1088/1361-6463/ae0e80

57. ASML, ASML TWINSCAN NXT: 1980Di Immersion Scanner Datasheet, dedicated Chuck Overlay ≤ 2.5 nm, [Online]. Available: https://www.asml.com/en/products/duv-lithography-systems, 2024.

58. Traub, Matthew C., Whitney Longsine, and Van N. Truskett, "Advances in nanoimprint lithography," Annual Review of Chemical and Biomolecular Engineering, Vol. 7, No. 1, 583-604, 2016.
doi:10.1146/annurev-chembioeng-080615-034635

59. Einck, Vincent J., Mahsa Torfeh, Andrew McClung, Dae Eon Jung, Mahdad Mansouree, Amir Arbabi, and James J. Watkins, "Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms," ACS Photonics, Vol. 8, No. 8, 2400-2409, 2021.
doi:10.1021/acsphotonics.1c00609

60. Cox, Lewis M., Alina M. Martinez, Adrienne K. Blevins, Nancy Sowan, Yifu Ding, and Christopher N. Bowman, "Nanoimprint lithography: Emergent materials and methods of actuation," Nano Today, Vol. 31, 100838, 2020.
doi:10.1016/j.nantod.2019.100838

61. Shudo, Shinichi, Hirotoshi Torii, Yoshio Suzaki, Atsushi Kimura, Kiyohito Yamamoto, Mitsuru Hiura, Keita Sakai, and Yukio Takabayashi, "Nanoimprint performance improvements for high volume semiconductor device manufacturing," Photomask Japan 2024: XXX Symposium on Photomask and Next-Generation Lithography Mask Technology, Vol. 13177, 42-49, Japan, 2024.
doi:10.1117/12.3034104

62. Xu, Han-Lei, Zi-Ming Meng, Yuan-Hao Liu, Jin-Yue Su, Ze-Zhou Fang, and Jin-Yun Zhou, "Mid-infrared bifunctional high-Q plasmonic metasurfaces with strong intrinsic chirality and imaging-based biosensing," Journal of Materials Chemistry C, 2025.
doi:10.1039/d5tc00996k

63. Liu, Lu, Zhe Li, Changyin Cai, Weiming Zhu, Xiaojia Zheng, Wenhua Zhang, Jimmy Xu, and Zhijun Liu, "High-Q hybridized resonance in a plasmonic metasurface of asymmetric aligned magnetic dipoles," Applied Physics Letters, Vol. 117, No. 8, 081108, 2020.
doi:10.1063/5.0014311

64. Xing, Li, Qiqige Wulan, Jiachen Yu, and Zhijun Liu, "Plasmonic anapole mode in a mid-infrared metasurface with improved quality factor," Plasmonics, Vol. 20, No. 6, 3733-3740, 2025.
doi:10.1007/s11468-024-02594-w

65. Dayal, Govind, Ankur Solanki, Xin Yu Chin, Tze Chien Sum, Cesare Soci, and Ranjan Singh, "High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites," Journal of Applied Physics, Vol. 122, No. 7, 073101, 2017.
doi:10.1063/1.4997442

66. Yi, Soongyu, Ming Zhou, Zongfu Yu, Pengyu Fan, Nader Behdad, Dianmin Lin, Ken Xingze Wang, Shanhui Fan, and Mark Brongersma, "Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals," Nature Nanotechnology, Vol. 13, No. 12, 1143-1147, 2018.
doi:10.1038/s41565-018-0278-9

67. Avrahamy, Roy, Moshe Zohar, Benny Milgrom, and Mark Auslender, "Mid-infrared photodetector spectrometer concept based on ultrathin all-dielectric metamaterial with azimuth-incidence-angle tuned perfect optical absorption: Design and analysis," Materials & Design, Vol. 245, 113298, 2024.
doi:10.1016/j.matdes.2024.113298

68. Wang, Zhu, Soongyu Yi, Ang Chen, Ming Zhou, Ting Shan Luk, Anthony James, John Nogan, Willard Ross, Graham Joe, Alireza Shahsafi, Ken Xingze Wang, Mikhail A. Kats, and Zongfu Yu, "Single-shot on-chip spectral sensors based on photonic crystal slabs," Nature Communications, Vol. 10, No. 1, 1020, Mar. 2019.
doi:10.1038/s41467-019-08994-5

69. Miroshnichenko, Andrey E., Sergej Flach, and Yuri S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics, Vol. 82, No. 3, 2257-2298, Aug. 2010.
doi:10.1103/revmodphys.82.2257

70. Andrewartha, J. R., G. H. Derrick, and R. C. McPhedran, "A general modal theory for reflection gratings," Optica Acta: International Journal of Optics, Vol. 28, No. 11, 1501-1516, 1981.
doi:10.1080/713820488

71. Sheng, Ping, R. S. Stepleman, and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations," Physical Review B, Vol. 26, No. 6, 2907-2916, Sep. 1982.
doi:10.1103/physrevb.26.2907

72. Li, Lifeng, "A modal analysis of lamellar diffraction gratings in conical mountings," Journal of Modern Optics, Vol. 40, No. 4, 553-573, 1993.
doi:10.1080/09500349314550631

73. Auslender, Mark and Shlomo Hava, "Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures," Optics Letters, Vol. 21, No. 21, 1765-1767, 1996.
doi:10.1364/ol.21.001765

74. Lalanne, Philippe and G. Michael Morris, "Highly improved convergence of the coupled-wave method for TM polarization," Journal of the Optical Society of America A, Vol. 13, No. 4, 779-784, 1996.
doi:10.1364/josaa.13.000779

75. Granet, G. and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," Journal of the Optical Society of America A, Vol. 13, No. 5, 1019-1023, 1996.
doi:10.1364/josaa.13.001019

76. Li, Lifeng, "Use of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A, Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/josaa.13.001870

77. Li, Lifeng, "Mathematical reflections on the Fourier modal method in grating theory," Mathematical Modeling in Optical Science, 111-139, G. Bao, L. Cowsar, and W. Masters, Ed., SIAM, Philadelphia, 2001.

78. Li, Lifeng, "New formulation of the Fourier modal method for crossed surface-relief gratings," Journal of the Optical Society of America A, Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1364/josaa.14.002758

79. Popov, Evgeny and Michel Nevière, "Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," Journal of the Optical Society of America A, Vol. 18, No. 11, 2886-2894, 2001.
doi:10.1364/josaa.18.002886

80. Popov, Evgeni, "Differential method for periodic structures," Gratings: Theory and Numeric Applications, Second Revisited Edition, 7.1-7.57, E. Popov, Ed., AMU (PUP), Apr. 2014.

81. Schuster, Thomas, Johannes Ruoff, Norbert Kerwien, Stephan Rafler, and Wolfgang Osten, "Normal vector method for convergence improvement using the RCWA for crossed gratings," Journal of the Optical Society of America A, Vol. 24, No. 9, 2880-2890, 2007.
doi:10.1364/josaa.24.002880

82. Martí, Rafael, "Multi-start methods," Handbook of Metaheuristics, 355-368, F. Glover and G. A. Kochenberger, Eds., Springer US, Boston, MA, 2003.

83. Ugray, Zsolt, Leon Lasdon, John Plummer, Fred Glover, James Kelly, and Rafael Martí, "Scatter search and local NLP solvers: A multistart framework for global optimization," INFORMS Journal on Computing, Vol. 19, No. 3, 313-484, 2007.
doi:10.1287/ijoc.1060.0175

84. "Matlab R2019a and Optimization Toolbox 8.3," The MathWorks, Inc., Natick, MA, USA, 2019.