Vol. 184
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-12-02
Laser-Tracking-Modulated Microwave Temporal Metasurfaces for Mobile Hybrid Wireless Communications (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 184, 24-31, 2025
Abstract
Temporal metasurfaces offer a promising platform for new-architecture wireless communications by enabling fast modulation of both electromagnetic waves and digital information. Optical control of these metasurfaces is particularly attractive as it establishes a direct physical bridge between optical and microwave signals, forming the foundation for optoelectronic hybrid communication systems. However, existing schemes are confined to static pre-alignment of the laser beam with the metasurface, lacking real-time spatial alignment capability essential for real-world mobile applications. Here, we propose and realize a mobile hybrid wireless communication system based on the designed laser-tracking-modulated microwave temporal metasurface. This communication system is constructed by integrating a photodiode-based microwave temporal metasurface, a vision-assisted laser-tracking transmitter, and a microwave receiver, enabling direct laser-to-microwave signal conversion sustained by dynamic alignment. Experimental results demonstrate that the system maintains successfully a stable hybrid communication link while the laser transmitter is in motion. This work provides a viable strategy for establishing stable hybrid wireless links for moving platforms and drones in high-mobility scenarios.
Supplementary Information
Citation
Sheng Yuan, Zhi Zhou Ding, Xin Ge Zhang, Dong Jie Wang, Jian Kai Sun, and Wei Xiang Jiang, "Laser-Tracking-Modulated Microwave Temporal Metasurfaces for Mobile Hybrid Wireless Communications (Invited Paper)," Progress In Electromagnetics Research, Vol. 184, 24-31, 2025.
doi:10.2528/PIER25093002
References

1. Zhang, Lei, Xiao Qing Chen, Shuo Liu, Qian Zhang, Jie Zhao, Jun Yan Dai, Guo Dong Bai, Xiang Wan, Qiang Cheng, Giuseppe Castaldi, Vincenzo Galdi, and Tie Jun Cui, "Space-time-coding digital metasurfaces," Nature Communications, Vol. 9, No. 1, 4334, 2018.
doi:10.1038/s41467-018-06802-0

2. Taravati, Sajjad and George V. Eleftheriades, "Microwave space-time-modulated metasurfaces," ACS Photonics, Vol. 9, No. 2, 305-318, 2022.
doi:10.1021/acsphotonics.1c01041

3. Guo, Xuexue, Yimin Ding, Yao Duan, and Xingjie Ni, "Nonreciprocal metasurface with space-time phase modulation," Light: Science & Applications, Vol. 8, No. 1, 123, 2019.
doi:10.1038/s41377-019-0225-z

4. Karl, Nicholas, Polina P. Vabishchevich, Maxim R. Shcherbakov, Sheng Liu, Michael B. Sinclair, Gennady Shvets, and Igal Brener, "Frequency conversion in a time-variant dielectric metasurface," Nano Letters, Vol. 20, No. 10, 7052-7058, 2020.
doi:10.1021/acs.nanolett.0c02113

5. Ke, Jun Chen, Jun Yan Dai, Jun Wei Zhang, Zhanye Chen, Ming Zheng Chen, Yunfeng Lu, Lei Zhang, Li Wang, Qun Yan Zhou, Long Li, et al. "Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases," Light: Science & Applications, Vol. 11, No. 1, 273, 2022.
doi:10.1038/s41377-022-00973-8

6. Wang, Xuchen, Mohammad Sajjad Mirmoosa, Viktar S. Asadchy, Carsten Rockstuhl, Shanhui Fan, and Sergei A. Tretyakov, "Metasurface-based realization of photonic time crystals," Science Advances, Vol. 9, No. 14, eadg7541, 2023.
doi:10.1126/sciadv.adg7541

7. Wu, Geng-Bo, Jun Yan Dai, Kam Man Shum, Ka Fai Chan, Qiang Cheng, Tie Jun Cui, and Chi Hou Chan, "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Vol. 14, No. 1, 5155, 2023.
doi:10.1038/s41467-023-40717-9

8. Zhang, Xin Ge, Ya Lun Sun, Qian Yu, Qiang Cheng, Wei Xiang Jiang, Cheng-Wei Qiu, and Tie Jun Cui, "Smart Doppler cloak operating in broad band and full polarizations," Advanced Materials, Vol. 33, No. 17, 2007966, 2021.
doi:10.1002/adma.202007966

9. Takeshita, Hiroki, Ashif Aminulloh Fathnan, Daisuke Nita, Atsuko Nagata, Shinya Sugiura, and Hiroki Wakatsuchi, "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Vol. 15, No. 1, 196, 2024.
doi:10.1038/s41467-023-44627-8

10. Wu, Haotian, Xin Xin Gao, Lei Zhang, Guo Dong Bai, Qiang Cheng, Lianlin Li, and Tie Jun Cui, "Harmonic information transitions of spatiotemporal metasurfaces," Light: Science & Applications, Vol. 9, No. 1, 198, 2020.
doi:10.1038/s41377-020-00441-1

11. Stefanini, Luca, Davide Ramaccia, Mirko Barbuto, Michela Longhi, Alessio Monti, Stefano Vellucci, Alessandro Toscano, Andrea Alu, Vincenzo Galdi, and Filiberto Bilotti, "Time-varying metasurfaces for efficient surface-wave coupling to radiation and frequency conversion," Laser & Photonics Reviews, Vol. 18, No. 12, 2400315, 2024.
doi:10.1002/lpor.202400315

12. Wang, Xuchen, Viktar S. Asadchy, Shanhui Fan, and Sergei A. Tretyakov, "Space-time metasurfaces for power combining of waves," ACS Photonics, Vol. 8, No. 10, 3034-3041, 2021.
doi:10.1021/acsphotonics.1c00981

13. Shadrivov, Ilya V., Polina V. Kapitanova, Stanislav I. Maslovski, and Yuri S. Kivshar, "Metamaterials controlled with light," Physical Review Letters, Vol. 109, No. 8, 083902, 2012.
doi:10.1103/physrevlett.109.083902

14. Pors, Anders, Michael G. Nielsen, and Sergey I. Bozhevolnyi, "Analog computing using reflective plasmonic metasurfaces," Nano Letters, Vol. 15, No. 1, 791-797, 2015.
doi:10.1021/nl5047297

15. Zhang, Xin Ge, Wen Xuan Tang, Wei Xiang Jiang, Guo Dong Bai, Jian Tang, Lin Bai, Cheng-Wei Qiu, and Tie Jun Cui, "Light-controllable digital coding metasurfaces," Advanced Science, Vol. 5, No. 11, 1801028, 2018.
doi:10.1002/advs.201801028

16. Zhang, Xin Ge, Wei Xiang Jiang, Hao Lin Jiang, Qiang Wang, Han Wei Tian, Lin Bai, Zhang Jie Luo, Shang Sun, Yu Luo, Cheng-Wei Qiu, and Tie Jun Cui, "An optically driven digital metasurface for programming electromagnetic functions," Nature Electronics, Vol. 3, No. 3, 165-171, 2020.
doi:10.1038/s41928-020-0380-5

17. Zhang, Xin Ge, Ya Lun Sun, Bingcheng Zhu, Wei Xiang Jiang, Zaichen Zhang, and Tie Jun Cui, "Light-controllable time-domain digital coding metasurfaces," Advanced Photonics, Vol. 4, No. 2, 025001, 2022.
doi:10.1117/1.ap.4.2.025001

18. Sun, Ya Lun, Xin Ge Zhang, Zhixiang Huang, Han Wei Tian, Tie Jun Cui, and Wei Xiang Jiang, "Intelligent transmissive microwave metasurface with optical sensing and transparency," Research, Vol. 7, 0514, 2024.
doi:10.34133/research.0514

19. Sayanskiy, Andrey, Andrei Belov, Ruslan Yafasov, Andrey Lyulyakin, Alexander Sherstobitov, Stanislav Glybovski, and Vladimir Lyashev, "A 2D-programmable and scalable reconfigurable intelligent surface remotely controlled via digital infrared code," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 570-580, 2023.
doi:10.1109/tap.2022.3217327

20. Zhang, Xin Ge, Ya Lun Sun, Bingcheng Zhu, Junjia Wang, Tianxiang Zhao, Wei Xiang Jiang, Zhixiang Huang, Zaichen Zhang, and Tie Jun Cui, "Optoelectronic metasurface for free-space optical-microwave interactions," ACS Applied Materials & Interfaces, Vol. 15, No. 18, 22744-22751, 2023.
doi:10.1021/acsami.3c02290

21. Hu, S., C. Wang, S. Du, Z. Han, N. Hu, and C. Gu, "Laser-induced reconfigurable wavefront control with a structured Ge2Sb2Te5-based metasurface," Communications Physics, Vol. 7, 346, 2024.
doi:10.1038/s42005-024-01846-9

22. Sanjari, Pouria and Firooz Aflatouni, "A reconfigurable non-linear active metasurface for coherent wave down-conversion," Nature Communications, Vol. 16, No. 1, 1987, 2025.
doi:10.1038/s41467-025-57132-x

23. Chen, Benwen, Jingbo Wu, Weili Li, Caihong Zhang, Kebin Fan, Qiang Xue, Yaojia Chi, Qiye Wen, Biaobing Jin, Jian Chen, and Peiheng Wu, "Programmable terahertz metamaterials with non-volatile memory," Laser & Photonics Reviews, Vol. 16, No. 4, 2270019, 2022.
doi:10.1002/lpor.202100472

24. Zhang, Xin Ge, Ya Lun Sun, Bingcheng Zhu, Han Wei Tian, Bo Yuan Wang, Zaichen Zhang, Cheng-Wei Qiu, Tie Jun Cui, and Wei Xiang Jiang, "Wireless microwave-to-optical conversion via programmable metasurface without DC supply," Nature Communications, Vol. 16, No. 1, 528, 2025.
doi:10.1038/s41467-025-55940-9

25. Tang, Wankai, Jun Yan Dai, Mingzheng Chen, Xiang Li, Qiang Cheng, Shi Jin, Kai-Kit Wong, and Tie Jun Cui, "Programmable metasurface-based RF chain-free 8PSK wireless transmitter," Electronics Letters, Vol. 55, No. 7, 417-420, 2019.
doi:10.1049/el.2019.0400

26. Ataloglou, Vasileios G., Sajjad Taravati, and George V. Eleftheriades, "Metasurfaces: Physics and applications in wireless communications," National Science Review, Vol. 10, No. 8, nwad164, 2023.
doi:10.1093/nsr/nwad164

27. Ke, Jun Chen, Li Wang, Mingzhu Jiang, and Qiang Wang, "Wireless communication using a radiation-type metasurface," Micromachines, Vol. 16, No. 8, 924, 2025.
doi:10.3390/mi16080924

28. Bai, Xuyang, Shurun Tan, Said Mikki, Erping Li, and Tie-Jun Cui, "Information-theoretic measures for reconfigurable metasurface-enabled direct digital modulation systems: An electromagnetic perspective," Progress In Electromagnetics Research, Vol. 179, 1-18, 2024.
doi:10.2528/pier23121401

29. Jin, Lei, Jialei Xie, Baicao Pan, and Guoqing Luo, "Generalized phase retrieval model based on physics-inspired network for holographic metasurface," Progress In Electromagnetics Research, Vol. 178, 103-110, 2023.
doi:10.2528/PIER23100604

30. Zhou, Hao, Melike Erol-Kantarci, Yuanwei Liu, and H. Vincent Poor, "A survey on model-based, heuristic, and machine learning optimization approaches in RIS-aided wireless networks," IEEE Communications Surveys & Tutorials, Vol. 26, No. 2, 781-823, 2024.
doi:10.1109/comst.2023.3340099

31. Ra'di, Younes, Nikita Nefedkin, Petar Popovski, and Andrea Alù, "Metasurfaces for next-generation wireless communication systems," National Science Review, Vol. 10, No. 8, nwad140, 2023.
doi:10.1093/nsr/nwad140

32. Tao, Zihan, Haoyu Wang, Hanke Feng, Yijun Guo, Bitao Shen, Dan Sun, Yuansheng Tao, Changhao Han, Yandong He, John E. Bowers, et al. "Ultrabroadband on-chip photonics for full-spectrum wireless communications," Nature, Vol. 645, 80-87, 2025.
doi:10.1038/s41586-025-09451-8

33. Sharma, Teena, Abdellah Chehri, and Paul Fortier, "Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies," Transactions on Emerging Telecommunications Technologies, Vol. 32, No. 3, e4155, 2021.

34. Tian, Han Wei, Ya Lun Sun, Xin Ge Zhang, Xin Li, Qian Zhu, Chao Song, Cheng-Wei Qiu, Tie Jun Cui, and Wei Xiang Jiang, "Solar-powered light-modulated microwave programmable metasurface for sustainable wireless communications," Nature Communications, Vol. 16, No. 1, 2524, 2025.
doi:10.1038/s41467-025-57923-2

35. Jones, Thomas R., Alexander V. Kildishev, Mordechai Segev, and Dimitrios Peroulis, "Time-reflection of microwaves by a fast optically-controlled time-boundary," Nature Communications, Vol. 15, No. 1, 6786, 2024.
doi:10.1038/s41467-024-51171-6

36. Chen, Biao and Haotian Yu, "Visual tracking for mobile optical wireless communications," Optics Express, Vol. 28, No. 21, 31119-31126, 2020.
doi:10.1364/oe.402557

37. Lee, Dong-Hun, Duc-Quan Tran, Young-Bok Kim, and Soumayya Chakir, "A robust double active control system design for disturbance suppression of a two-axis gimbal system," Electronics, Vol. 9, No. 10, 1638, 2020.
doi:10.3390/electronics9101638

38. Yang, Zhaofeng, Zohaib Khan, Yue Shen, and Hui Liu, "GTDR-YOLOv12: Optimizing YOLO for efficient and accurate weed detection in agriculture," Agronomy, Vol. 15, No. 8, 1824, 2025.
doi:10.3390/agronomy15081824

39. Ji, Yanpeng, Tianxiang Ma, Hongliang Shen, Haiyan Feng, Zizi Zhang, Dan Li, and Yuling He, "Transmission line defect detection algorithm based on improved YOLOv12," Electronics, Vol. 14, No. 12, 2432, 2025.
doi:10.3390/electronics14122432