School of Mechanical and Manufacturing Engineering
The University of New South Wales
Australia
Homepage1. Munafò, Marcus R., Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J. Ware, and John P. A. Ioannidis, "A manifesto for reproducible science," Nature Human Behaviour, Vol. 1, No. 1, 0021, 2017.
doi:10.1038/s41562-016-0021 Google Scholar
2. Rzhetsky, Andrey, Jacob G. Foster, Ian T. Foster, and James A. Evans, "Choosing experiments to accelerate collective discovery," Proceedings of the National Academy of Sciences, Vol. 112, No. 47, 14569-14574, 2015.
doi:10.1073/pnas.1509757112 Google Scholar
3. Uzzi, Brian, Satyam Mukherjee, Michael Stringer, and Ben Jones, "Atypical combinations and scientific impact," Science, Vol. 342, No. 6157, 468-472, 2013.
doi:10.1126/science.1240474 Google Scholar
4. Bennett, Joan W. and King-Thom Chung, "Alexander Fleming and the discovery of penicillin," Advances in Applied Microbiology, Vol. 49, 163-184, 2001.
doi:10.1016/S0065-2164(01)49013-7 Google Scholar
5. Wilson, R. W., "The cosmic microwave background radiation," Science, Vol. 205, No. 4409, 866-874, 1979.
doi:10.1126/science.205.4409.866 Google Scholar
6. Murayama, Kota, Makoto Nirei, and Hiroshi Shimizu, "Management of science, serendipity, and research performance: Evidence from a survey of scientists in Japan and the U.S.," Research Policy, Vol. 44, No. 4, 862-873, 2015.
doi:10.1016/j.respol.2015.01.018 Google Scholar
7. Bell Burnell, Jocelyn, "The past, present and future of pulsars," Nature Astronomy, Vol. 1, No. 12, 831-834, 2017.
doi:10.1038/s41550-017-0323-x Google Scholar
8. Osepchuk, J. M., "A history of microwave heating applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1200-1224, 1984.
doi:10.1109/tmtt.1984.1132831 Google Scholar
9. Doudna, Jennifer A. and Emmanuelle Charpentier, "The new frontier of genome engineering with CRISPR-Cas9," Science, Vol. 346, No. 6213, 1258096, 2014.
doi:10.1126/science.1258096 Google Scholar
10. Jinek, Martin, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A. Doudna, and Emmanuelle Charpentier, "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity," Science, Vol. 337, No. 6096, 816-821, 2012.
doi:10.1126/science.1225829 Google Scholar
11. Nüsslin, Fridtjof, "Wilhelm Conrad Röntgen: The scientist and his discovery," Physica Medica, Vol. 79, 65-68, 2020.
doi:10.1016/j.ejmp.2020.10.010 Google Scholar
12. Shirakawa, Hideki, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang, and Alan J. Heeger, "Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x," Journal of the Chemical Society, Chemical Communications, No. 16, 578-580, 1977.
doi:10.1039/c39770000578 Google Scholar
13. Garrett, Alfred B., "Teflon: Roy J. Plunkett," Journal of Chemical Education, Vol. 39, No. 6, 288, 1962.
doi:10.1021/ed039p288 Google Scholar
14. Tanaka, Koichi, Hiroaki Waki, Yutaka Ido, Satoshi Akita, Yoshikazu Yoshida, Tamio Yoshida, and T. Matsuo, "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry," Rapid Communications in Mass Spectrometry, Vol. 2, No. 8, 151-153, 1988. Google Scholar
15. Busch, Christian, "Towards a theory of serendipity: A systematic review and conceptualization," Journal of Management Studies, Vol. 61, No. 3, 1110-1151, 2024.
doi:10.1111/joms.12890 Google Scholar
16. Li, Danielle, Pierre Azoulay, and Bhaven N. Sampat, "The applied value of public investments in biomedical research," Science, Vol. 356, No. 6333, 78-81, 2017.
doi:10.1126/science.aal0010 Google Scholar
17. Ioannidis, John P. A., "Why most published research findings are false," PLOS Medicine, Vol. 2, No. 8, e124, 2005.
doi:10.1371/journal.pmed.0020124 Google Scholar
18. Alberts, Bruce, Marc W. Kirschner, Shirley Tilghman, and Harold Varmus, "Rescuing US biomedical research from its systemic flaws," Proceedings of the National Academy of Sciences, Vol. 111, No. 16, 5773-5777, 2014.
doi:10.1073/pnas.1404402111 Google Scholar
19. Xu, Yongjun, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu, Yanjun Wu, Fengliang Dong, Cheng-Wei Qiu, et al., "Artificial intelligence: A powerful paradigm for scientific research," The Innovation, Vol. 2, No. 4, 100179, 2021.
doi:10.1016/j.xinn.2021.100179 Google Scholar
20. Wang, Hanchen, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al., "Scientific discovery in the age of artificial intelligence," Nature, Vol. 620, No. 7972, 47-60, 2023.
doi:10.1038/s41586-023-06221-2 Google Scholar
21. Zhao, Alexis Pengfei, Shuangqi Li, Zhidong Cao, Paul Jen-Hwa Hu, Jiaojiao Wang, Yue Xiang, Da Xie, and Xi Lu, "AI for science: Predicting infectious diseases," Journal of Safety Science and Resilience, Vol. 5, No. 2, 130-146, 2024.
doi:10.1016/j.jnlssr.2024.02.002 Google Scholar
22. Zheng, Guoan, Roarke Horstmeyer, and Changhuei Yang, "Wide-field, high-resolution Fourier ptychographic microscopy," Nature Photonics, Vol. 7, No. 9, 739-745, 2013.
doi:10.1038/nphoton.2013.187 Google Scholar
23. Park, Yong Keun, Christian Depeursinge, and Gabriel Popescu, "Quantitative phase imaging in biomedicine," Nature Photonics, Vol. 12, No. 10, 578-589, 2018.
doi:10.1038/s41566-018-0253-x Google Scholar
24. Chen, Bi-Chang, Wesley R. Legant, Kai Wang, Lin Shao, Daniel E. Milkie, Michael W. Davidson, Chris Janetopoulos, Xufeng S. Wu, John A. Hammer III, Zhe Liu, et al., "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution," Science, Vol. 346, No. 6208, 1257998, 2014.
doi:10.1126/science.1257998 Google Scholar
25. Goda, K. and B. Jalali, "Dispersive Fourier transformation for fast continuous single-shot measurements," Nature Photonics, Vol. 7, No. 2, 102-112, 2013.
doi:10.1038/nphoton.2012.359 Google Scholar
26. Alix-Panabières, Catherine and Klaus Pantel, "Challenges in circulating tumour cell research," Nature Reviews Cancer, Vol. 14, 623-631, 2014.
doi:10.1038/nrc3820 Google Scholar
27. Heath, James R., Antoni Ribas, and Paul S. Mischel, "Single-cell analysis tools for drug discovery and development," Nature Reviews Drug Discovery, Vol. 15, No. 3, 204-216, 2016.
doi:10.1038/nrd.2015.16 Google Scholar
28. Agresti, Jeremy J., Eugene Antipov, Adam R. Abate, Keunho Ahn, Amy C. Rowat, Jean-Christophe Baret, Manuel Marquez, Alexander M. Klibanov, Andrew D. Griffiths, and David A. Weitz, "Ultrahigh-throughput screening in drop-based microfluidics for directed evolution," Proceedings of the National Academy of Sciences, Vol. 107, No. 9, 4004-4009, 2010.
doi:10.1073/pnas.0910781107 Google Scholar
29. Isozaki, A., Y. Nakagawa, M. H. Loo, Y. Shibata, N. Tanaka, D. L. Setyaningrum, J.-W. Park, Y. Shirasaki, H. Mikami, D. Huang, et al., "Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments," Science Advances, Vol. 6, No. 22, eaba6712, 2020.
doi:10.1126/sciadv.aba6712 Google Scholar
30. Rufo, Joseph, Feiyan Cai, James Friend, Martin Wiklund, and Tony Jun Huang, "Acoustofluidics for biomedical applications," Nature Reviews Methods Primers, Vol. 2, No. 1, 30, 2022.
doi:10.1038/s43586-022-00109-7 Google Scholar
31. Di Carlo, Dino, "Inertial microfluidics," Lab on a Chip, Vol. 9, No. 21, 3038-3046, 2009.
doi:10.1039/b912547g Google Scholar
32. Udani, Shreya, Justin Langerman, Doyeon Koo, Sevana Baghdasarian, Brian Cheng, Simran Kang, Citradewi Soemardy, Joseph de Rutte, Kathrin Plath, and Dino Di Carlo, "Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq," Nature Nanotechnology, Vol. 19, No. 3, 354-363, 2024.
doi:10.1038/s41565-023-01560-7 Google Scholar
33. Heikenfeld, J., A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, and J. Kim, "Wearable sensors: Modalities, challenges, and prospects," Lab on a Chip, Vol. 18, No. 2, 217-248, 2018.
doi:10.1039/c7lc00914c Google Scholar
34. Li, Xin Yu, Long Chen, Zi Xuan Cai, Ke Zhan Zhao, Qian Ma, Jianwei You, and Tie Jun Cui, "Contactless electromagnetic human sensing for biomedical and healthcare applications," Progress In Electromagnetics Research, Vol. 182, 121-139, 2025.
doi:10.2528/PIER25012003 Google Scholar
35. Han, Gyeo-Re, Artem Goncharov, Merve Eryilmaz, Shun Ye, Barath Palanisamy, Rajesh Ghosh, Fabio Lisi, Elliott Rogers, David Guzman, Defne Yigci, et al., "Machine learning in point-of-care testing: Innovations, challenges, and opportunities," Nature Communications, Vol. 16, No. 1, 3165, 2025.
doi:10.1038/s41467-025-58527-6 Google Scholar
36. Gao, Wei, Sam Emaminejad, Hnin Yin Yin Nyein, Samyuktha Challa, Kevin Chen, Austin Peck, Hossain M. Fahad, Hiroki Ota, Hiroshi Shiraki, Daisuke Kiriya, et al., "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, Vol. 529, No. 7587, 509-514, 2016.
doi:10.1038/nature16521 Google Scholar
37. Chen, Yihang, Kaiyu X. Fu, Renee Cotton, Zihao Ou, Jean Won Kwak, Jun-Chau Chien, Vladimir Kesler, Hnin Yin Yin Nyein, Michael Eisenstein, and H. Tom Soh, "A biochemical sensor with continuous extended stability in vivo," Nature Biomedical Engineering, Vol. 9, 1517-1530, 2025.
doi:10.1038/s41551-025-01389-6 Google Scholar
38. Fang, Hui, Ki Jun Yu, Christopher Gloschat, Zijian Yang, Enming Song, Chia-Han Chiang, Jianing Zhao, Sang Min Won, Siyi Xu, Michael Trumpis, et al., "Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology," Nature Biomedical Engineering, Vol. 1, No. 3, 0038, 2017.
doi:10.1038/s41551-017-0038 Google Scholar
39. Lee, Ju Young, Sang Hoon Park, Yujin Kim, Young Uk Cho, Jaejin Park, Jung-Hoon Hong, Kyubeen Kim, Jongwoon Shin, Jeong Eun Ju, In Sik Min, et al., "Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers," npj Flexible Electronics, Vol. 6, No. 1, 86, 2022.
doi:10.1038/s41528-022-00219-y Google Scholar
40. Gooding, J. Justin and Katharina Gaus, "Single-molecule sensors: Challenges and opportunities for quantitative analysis," Angewandte Chemie International Edition, Vol. 55, No. 38, 11354-11366, 2016.
doi:10.1002/anie.201600495 Google Scholar
41. King, Ross D., Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey, Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N. Soldatova, et al., "The automation of science," Science, Vol. 324, No. 5923, 85-89, 2009.
doi:10.1126/science.1165620 Google Scholar
42. Baião, Ana R., Zhaoxiang Cai, Rebecca C. Poulos, Phillip J. Robinson, Roger R. Reddel, Qing Zhong, Susana Vinga, and Emanuel Gonçalves, "A technical review of multi-omics data integration methods: From classical statistical to deep generative approaches," Briefings in Bioinformatics, Vol. 26, No. 4, bbaf355, 2025.
doi:10.1093/bib/bbaf355 Google Scholar
43. Singh, Amrit, Casey P. Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, Scott J. Tebbutt, and Kim-Anh Lê Cao, "DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays," Bioinformatics, Vol. 35, No. 17, 3055-3062, 2019.
doi:10.1093/bioinformatics/bty1054 Google Scholar
44. Zheng, Yuanting, Yaqing Liu, Jingcheng Yang, Lianhua Dong, Rui Zhang, Sha Tian, Ying Yu, Luyao Ren, Wanwan Hou, Feng Zhu, et al., "Multi-omics data integration using ratio-based quantitative profiling with quartet reference materials," Nature Biotechnology, Vol. 42, No. 7, 1133-1149, 2024.
doi:10.1038/s41587-023-01934-1 Google Scholar
45. El Kazwini, Nour and Guido Sanguinetti, "SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data," Genome Biology, Vol. 25, No. 1, 55, 2024.
doi:10.1186/s13059-024-03180-3 Google Scholar
46. Wang, Tongxin, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, and Kun Huang, "MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification," Nature Communications, Vol. 12, No. 1, 3445, 2021.
doi:10.1038/s41467-021-23774-w Google Scholar
47. Chandola, Varun, Arindam Banerjee, and Vipin Kumar, "Anomaly detection: A survey," ACM Computing Surveys (CSUR), Vol. 41, No. 3, 1-58, 2009.
doi:10.1145/1541880.1541882 Google Scholar
48. Betzig, Eric, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S. Bonifacino, Michael W. Davidson, Jennifer Lippincott-Schwartz, and Harald F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, No. 5793, 1642-1645, 2006.
doi:10.1126/science.1127344 Google Scholar
49. Rust, Michael J., Mark Bates, and Xiaowei Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods, Vol. 3, No. 10, 793-796, 2006.
doi:10.1038/nmeth929 Google Scholar
50. Nitta, Nao, Takeaki Sugimura, Akihiro Isozaki, Hideharu Mikami, Kei Hiraki, Shinya Sakuma, Takanori Iino, Fumihito Arai, Taichiro Endo, Yasuhiro Fujiwaki, et al., "Intelligent image-activated cell sorting," Cell, Vol. 175, No. 1, 266-276, 2018.
doi:10.1016/j.cell.2018.08.028 Google Scholar
51. Ding, Tianben, Kelvin C. M. Lee, Kevin K. Tsia, T. Nicolai Siegel, Dino Di Carlo, and Keisuke Goda, "Image-activated cell sorting," Nature Reviews Bioengineering, Vol. 3, No. 10, 890-907, 2025.
doi:10.1038/s44222-025-00334-1 Google Scholar
52. Popescu, Gabriel, Takahiro Ikeda, Ramachandra R. Dasari, and Michael S. Feld, "Diffraction phase microscopy for quantifying cell structure and dynamics," Optics Letters, Vol. 31, No. 6, 775-777, 2006.
doi:10.1364/ol.31.000775 Google Scholar
53. Ahrens, Misha B., Michael B. Orger, Drew N. Robson, Jennifer M. Li, and Philipp J. Keller, "Whole-brain functional imaging at cellular resolution using light-sheet microscopy," Nature Methods, Vol. 10, No. 5, 413-420, 2013.
doi:10.1038/nmeth.2434 Google Scholar
54. Thomson, Eric E., Mark Harfouche, Kanghyun Kim, Pavan C. Konda, Catherine W. Seitz, Colin Cooke, Shiqi Xu, Whitney S. Jacobs, Robin Blazing, Yang Chen, et al., "Gigapixel imaging with a novel multi-camera array microscope," eLife, Vol. 11, e74988, 2022.
doi:10.7554/elife.74988 Google Scholar
55. Maslov, Konstantin, Hao F. Zhang, Song Hu, and Lihong V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Optics Letters, Vol. 33, No. 9, 929-931, 2008.
doi:10.1364/ol.33.000929 Google Scholar
56. Kanno, Hiroshi, Fan Li, Jongchan Park, Hidenori Endo, Kuniyasu Niizuma, Liang Gao, and Keisuke Goda, "High-speed fluorescence lifetime imaging microscopy: Techniques, applications, and prospects," Biophotonics Discovery, Vol. 2, No. 3, 030901, 2025.
doi:10.1117/1.bios.2.3.030901 Google Scholar
57. Torrado, Belen, Bruno Pannunzio, Leonel Malacrida, and Michelle A. Digman, "Fluorescence lifetime imaging microscopy," Nature Reviews Methods Primers, Vol. 4, No. 1, 80, 2024.
doi:10.1038/s43586-024-00358-8 Google Scholar
58. Kanno, Hiroshi, Kotaro Hiramatsu, Hideharu Mikami, Atsushi Nakayashiki, Shota Yamashita, Arata Nagai, Kohki Okabe, Fan Li, Fei Yin, Keita Tominaga, et al., "High-throughput fluorescence lifetime imaging flow cytometry," Nature Communications, Vol. 15, No. 1, 7376, 2024.
doi:10.1038/s41467-024-51125-y Google Scholar
59. Zhou, Yuqi, Atsuhiro Nakagawa, Masahiro Sonoshita, Guillermo J. Tearney, Aydogan Ozcan, and Keisuke Goda, "Emergent photonics for cardiovascular health," Nature Photonics, Vol. 19, 671-680, 2025.
doi:10.1038/s41566-025-01714-0 Google Scholar
60. Nishikawa, Masako, Hiroshi Kanno, Yuqi Zhou, Ting-Hui Xiao, Takuma Suzuki, Yuma Ibayashi, Jeffrey Harmon, Shigekazu Takizawa, Kotaro Hiramatsu, Nao Nitta, et al., "Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19," Nature Communications, Vol. 12, No. 1, 7135, 2021.
doi:10.1038/s41467-021-27378-2 Google Scholar
61. Wang, Canran, Ehsan Shirzaei Sani, Chia-Ding Shih, Chwee Teck Lim, Joseph Wang, David G. Armstrong, and Wei Gao, "Wound management materials and technologies from bench to bedside and beyond," Nature Reviews Materials, Vol. 9, No. 8, 550-566, 2024.
doi:10.1038/s41578-024-00693-y Google Scholar
62. Gilbert, Fiona J., Lorraine Tucker, and Ken C. Young, "Digital breast tomosynthesis (DBT): A review of the evidence for use as a screening tool," Clinical Radiology, Vol. 71, No. 2, 141-150, 2016.
doi:10.1016/j.crad.2015.11.008 Google Scholar
63. The National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening," New England Journal of Medicine, Vol. 365, No. 5, 395-409, 2011.
doi:10.1056/nejmoa1102873 Google Scholar
64. Azoulay, Pierre, Joshua S. Graff Zivin, and Gustavo Manso, "Incentives and creativity: Evidence from the academic life sciences," The RAND Journal of Economics, Vol. 42, No. 3, 527-554, 2011.
doi:10.1111/j.1756-2171.2011.00140.x Google Scholar
65. Fortin, Jean-Michel and David J. Currie, "Big science vs. little science: How scientific impact scales with funding," PLOS One, Vol. 8, No. 6, e65263, 2013.
doi:10.1371/journal.pone.0065263 Google Scholar
66. Heinze, Thomas, Philip Shapira, Juan D. Rogers, and Jacqueline M. Senker, "Organizational and institutional influences on creativity in scientific research," Research Policy, Vol. 38, No. 4, 610-623, 2009.
doi:10.1016/j.respol.2009.01.014 Google Scholar
67. Rhoten, Diana and Andrew Parker, "Risks and rewards of an interdisciplinary research path," Science, Vol. 306, No. 5704, 2046, 2004.
doi:10.1126/science.1103628 Google Scholar
68. Van Noorden, Richard, "Interdisciplinary research by the numbers," Nature, Vol. 525, No. 7569, 306-307, 2015.
doi:10.1038/525306a Google Scholar
69. Ioannidis, John P. A., "How to make more published research true," PLOS Medicine, Vol. 11, No. 10, e1001747, 2015.
doi:10.1371/journal.pmed.1001747 Google Scholar
70. Nosek, Brian A., G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G. Chin, G. Christensen, et al., "Promoting an open research culture," Science, Vol. 348, No. 6242, 1422-1425, 2015.
doi:10.1126/science.aab2374 Google Scholar
71. Wang, Jian, Reinhilde Veugelers, and Paula Stephan, "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Vol. 46, No. 8, 1416-1436, 2017.
doi:10.1016/j.respol.2017.06.006 Google Scholar
72. Wilkinson, Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, et al., "The FAIR Guiding Principles for scientific data management and stewardship," Scientific Data, Vol. 3, No. 1, 160018, 2016.
doi:10.1038/sdata.2016.18 Google Scholar