Vol. 184
Latest Volume
All Volumes
PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-11-29
Serendipity Engineering with Photonics: Harnessing the Unexpected in Biology and Medicine(Invited Paper)
By
Progress In Electromagnetics Research, Vol. 184, 14-23, 2025
Abstract
Serendipity has long shaped transformative scientific discoveries, from penicillin and microwave oven to cosmic microwave background. These advances were not accidents but arose when prepared minds encountered unexpected phenomena in environments that enabled recognition and follow-up. In today's research climate, which often emphasizes narrowly defined goals and short-term deliverables, the role of serendipity is undervalued and frequently left to chance. This review introduces the concept of serendipity engineering: the intentional design of technologies, analytical frameworks, and research cultures that enhance the probability of meaningful chance discoveries. We outline four core principles - (i) expanding the observable space with advanced measurement tools, (ii) preserving anomalies through unbiased data stewardship, (iii) applying analytical methods that surface rare or emergent patterns, and (iv) fostering openness to unexpected results. Emphasis is placed on applications in biology and medicine empowered by advanced photonics and electromagnetism, where system complexity and disease heterogeneity make serendipitous findings particularly impactful. We propose a roadmap for embedding serendipity as a strategic component of 21st-century science, transforming it from a passive hope into an active driver of discovery.
Citation
Kelvin C. M. Lee, Walker Peterson, Fabio Lisi, Tianben Ding, Kotaro Nojima, Hiroshi Kanno, Yuqi Zhou, Hiroyuki Matsumura, Yasutaka Kitahama, Ming Li, Petra Paie, Cheng Lei, Tamiki Komatsuzaki, Masahiro Sonoshita, Dino Di Carlo, and Keisuke Goda, "Serendipity Engineering with Photonics: Harnessing the Unexpected in Biology and Medicine(Invited Paper)," Progress In Electromagnetics Research, Vol. 184, 14-23, 2025.
doi:10.2528/PIER25100702
References

1. Munafò, Marcus R., Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J. Ware, and John P. A. Ioannidis, "A manifesto for reproducible science," Nature Human Behaviour, Vol. 1, No. 1, 0021, 2017.
doi:10.1038/s41562-016-0021

2. Rzhetsky, Andrey, Jacob G. Foster, Ian T. Foster, and James A. Evans, "Choosing experiments to accelerate collective discovery," Proceedings of the National Academy of Sciences, Vol. 112, No. 47, 14569-14574, 2015.
doi:10.1073/pnas.1509757112

3. Uzzi, Brian, Satyam Mukherjee, Michael Stringer, and Ben Jones, "Atypical combinations and scientific impact," Science, Vol. 342, No. 6157, 468-472, 2013.
doi:10.1126/science.1240474

4. Bennett, Joan W. and King-Thom Chung, "Alexander Fleming and the discovery of penicillin," Advances in Applied Microbiology, Vol. 49, 163-184, 2001.
doi:10.1016/S0065-2164(01)49013-7

5. Wilson, R. W., "The cosmic microwave background radiation," Science, Vol. 205, No. 4409, 866-874, 1979.
doi:10.1126/science.205.4409.866

6. Murayama, Kota, Makoto Nirei, and Hiroshi Shimizu, "Management of science, serendipity, and research performance: Evidence from a survey of scientists in Japan and the U.S.," Research Policy, Vol. 44, No. 4, 862-873, 2015.
doi:10.1016/j.respol.2015.01.018

7. Bell Burnell, Jocelyn, "The past, present and future of pulsars," Nature Astronomy, Vol. 1, No. 12, 831-834, 2017.
doi:10.1038/s41550-017-0323-x

8. Osepchuk, J. M., "A history of microwave heating applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1200-1224, 1984.
doi:10.1109/tmtt.1984.1132831

9. Doudna, Jennifer A. and Emmanuelle Charpentier, "The new frontier of genome engineering with CRISPR-Cas9," Science, Vol. 346, No. 6213, 1258096, 2014.
doi:10.1126/science.1258096

10. Jinek, Martin, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A. Doudna, and Emmanuelle Charpentier, "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity," Science, Vol. 337, No. 6096, 816-821, 2012.
doi:10.1126/science.1225829

11. Nüsslin, Fridtjof, "Wilhelm Conrad Röntgen: The scientist and his discovery," Physica Medica, Vol. 79, 65-68, 2020.
doi:10.1016/j.ejmp.2020.10.010

12. Shirakawa, Hideki, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang, and Alan J. Heeger, "Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x," Journal of the Chemical Society, Chemical Communications, No. 16, 578-580, 1977.
doi:10.1039/c39770000578

13. Garrett, Alfred B., "Teflon: Roy J. Plunkett," Journal of Chemical Education, Vol. 39, No. 6, 288, 1962.
doi:10.1021/ed039p288

14. Tanaka, Koichi, Hiroaki Waki, Yutaka Ido, Satoshi Akita, Yoshikazu Yoshida, Tamio Yoshida, and T. Matsuo, "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry," Rapid Communications in Mass Spectrometry, Vol. 2, No. 8, 151-153, 1988.

15. Busch, Christian, "Towards a theory of serendipity: A systematic review and conceptualization," Journal of Management Studies, Vol. 61, No. 3, 1110-1151, 2024.
doi:10.1111/joms.12890

16. Li, Danielle, Pierre Azoulay, and Bhaven N. Sampat, "The applied value of public investments in biomedical research," Science, Vol. 356, No. 6333, 78-81, 2017.
doi:10.1126/science.aal0010

17. Ioannidis, John P. A., "Why most published research findings are false," PLOS Medicine, Vol. 2, No. 8, e124, 2005.
doi:10.1371/journal.pmed.0020124

18. Alberts, Bruce, Marc W. Kirschner, Shirley Tilghman, and Harold Varmus, "Rescuing US biomedical research from its systemic flaws," Proceedings of the National Academy of Sciences, Vol. 111, No. 16, 5773-5777, 2014.
doi:10.1073/pnas.1404402111

19. Xu, Yongjun, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu, Yanjun Wu, Fengliang Dong, Cheng-Wei Qiu, et al., "Artificial intelligence: A powerful paradigm for scientific research," The Innovation, Vol. 2, No. 4, 100179, 2021.
doi:10.1016/j.xinn.2021.100179

20. Wang, Hanchen, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al., "Scientific discovery in the age of artificial intelligence," Nature, Vol. 620, No. 7972, 47-60, 2023.
doi:10.1038/s41586-023-06221-2

21. Zhao, Alexis Pengfei, Shuangqi Li, Zhidong Cao, Paul Jen-Hwa Hu, Jiaojiao Wang, Yue Xiang, Da Xie, and Xi Lu, "AI for science: Predicting infectious diseases," Journal of Safety Science and Resilience, Vol. 5, No. 2, 130-146, 2024.
doi:10.1016/j.jnlssr.2024.02.002

22. Zheng, Guoan, Roarke Horstmeyer, and Changhuei Yang, "Wide-field, high-resolution Fourier ptychographic microscopy," Nature Photonics, Vol. 7, No. 9, 739-745, 2013.
doi:10.1038/nphoton.2013.187

23. Park, Yong Keun, Christian Depeursinge, and Gabriel Popescu, "Quantitative phase imaging in biomedicine," Nature Photonics, Vol. 12, No. 10, 578-589, 2018.
doi:10.1038/s41566-018-0253-x

24. Chen, Bi-Chang, Wesley R. Legant, Kai Wang, Lin Shao, Daniel E. Milkie, Michael W. Davidson, Chris Janetopoulos, Xufeng S. Wu, John A. Hammer III, Zhe Liu, et al., "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution," Science, Vol. 346, No. 6208, 1257998, 2014.
doi:10.1126/science.1257998

25. Goda, K. and B. Jalali, "Dispersive Fourier transformation for fast continuous single-shot measurements," Nature Photonics, Vol. 7, No. 2, 102-112, 2013.
doi:10.1038/nphoton.2012.359

26. Alix-Panabières, Catherine and Klaus Pantel, "Challenges in circulating tumour cell research," Nature Reviews Cancer, Vol. 14, 623-631, 2014.
doi:10.1038/nrc3820

27. Heath, James R., Antoni Ribas, and Paul S. Mischel, "Single-cell analysis tools for drug discovery and development," Nature Reviews Drug Discovery, Vol. 15, No. 3, 204-216, 2016.
doi:10.1038/nrd.2015.16

28. Agresti, Jeremy J., Eugene Antipov, Adam R. Abate, Keunho Ahn, Amy C. Rowat, Jean-Christophe Baret, Manuel Marquez, Alexander M. Klibanov, Andrew D. Griffiths, and David A. Weitz, "Ultrahigh-throughput screening in drop-based microfluidics for directed evolution," Proceedings of the National Academy of Sciences, Vol. 107, No. 9, 4004-4009, 2010.
doi:10.1073/pnas.0910781107

29. Isozaki, A., Y. Nakagawa, M. H. Loo, Y. Shibata, N. Tanaka, D. L. Setyaningrum, J.-W. Park, Y. Shirasaki, H. Mikami, D. Huang, et al., "Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments," Science Advances, Vol. 6, No. 22, eaba6712, 2020.
doi:10.1126/sciadv.aba6712

30. Rufo, Joseph, Feiyan Cai, James Friend, Martin Wiklund, and Tony Jun Huang, "Acoustofluidics for biomedical applications," Nature Reviews Methods Primers, Vol. 2, No. 1, 30, 2022.
doi:10.1038/s43586-022-00109-7

31. Di Carlo, Dino, "Inertial microfluidics," Lab on a Chip, Vol. 9, No. 21, 3038-3046, 2009.
doi:10.1039/b912547g

32. Udani, Shreya, Justin Langerman, Doyeon Koo, Sevana Baghdasarian, Brian Cheng, Simran Kang, Citradewi Soemardy, Joseph de Rutte, Kathrin Plath, and Dino Di Carlo, "Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq," Nature Nanotechnology, Vol. 19, No. 3, 354-363, 2024.
doi:10.1038/s41565-023-01560-7

33. Heikenfeld, J., A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, and J. Kim, "Wearable sensors: Modalities, challenges, and prospects," Lab on a Chip, Vol. 18, No. 2, 217-248, 2018.
doi:10.1039/c7lc00914c

34. Li, Xin Yu, Long Chen, Zi Xuan Cai, Ke Zhan Zhao, Qian Ma, Jianwei You, and Tie Jun Cui, "Contactless electromagnetic human sensing for biomedical and healthcare applications," Progress In Electromagnetics Research, Vol. 182, 121-139, 2025.
doi:10.2528/PIER25012003

35. Han, Gyeo-Re, Artem Goncharov, Merve Eryilmaz, Shun Ye, Barath Palanisamy, Rajesh Ghosh, Fabio Lisi, Elliott Rogers, David Guzman, Defne Yigci, et al., "Machine learning in point-of-care testing: Innovations, challenges, and opportunities," Nature Communications, Vol. 16, No. 1, 3165, 2025.
doi:10.1038/s41467-025-58527-6

36. Gao, Wei, Sam Emaminejad, Hnin Yin Yin Nyein, Samyuktha Challa, Kevin Chen, Austin Peck, Hossain M. Fahad, Hiroki Ota, Hiroshi Shiraki, Daisuke Kiriya, et al., "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, Vol. 529, No. 7587, 509-514, 2016.
doi:10.1038/nature16521

37. Chen, Yihang, Kaiyu X. Fu, Renee Cotton, Zihao Ou, Jean Won Kwak, Jun-Chau Chien, Vladimir Kesler, Hnin Yin Yin Nyein, Michael Eisenstein, and H. Tom Soh, "A biochemical sensor with continuous extended stability in vivo," Nature Biomedical Engineering, Vol. 9, 1517-1530, 2025.
doi:10.1038/s41551-025-01389-6

38. Fang, Hui, Ki Jun Yu, Christopher Gloschat, Zijian Yang, Enming Song, Chia-Han Chiang, Jianing Zhao, Sang Min Won, Siyi Xu, Michael Trumpis, et al., "Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology," Nature Biomedical Engineering, Vol. 1, No. 3, 0038, 2017.
doi:10.1038/s41551-017-0038

39. Lee, Ju Young, Sang Hoon Park, Yujin Kim, Young Uk Cho, Jaejin Park, Jung-Hoon Hong, Kyubeen Kim, Jongwoon Shin, Jeong Eun Ju, In Sik Min, et al., "Foldable three dimensional neural electrode arrays for simultaneous brain interfacing of cortical surface and intracortical multilayers," npj Flexible Electronics, Vol. 6, No. 1, 86, 2022.
doi:10.1038/s41528-022-00219-y

40. Gooding, J. Justin and Katharina Gaus, "Single-molecule sensors: Challenges and opportunities for quantitative analysis," Angewandte Chemie International Edition, Vol. 55, No. 38, 11354-11366, 2016.
doi:10.1002/anie.201600495

41. King, Ross D., Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey, Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N. Soldatova, et al., "The automation of science," Science, Vol. 324, No. 5923, 85-89, 2009.
doi:10.1126/science.1165620

42. Baião, Ana R., Zhaoxiang Cai, Rebecca C. Poulos, Phillip J. Robinson, Roger R. Reddel, Qing Zhong, Susana Vinga, and Emanuel Gonçalves, "A technical review of multi-omics data integration methods: From classical statistical to deep generative approaches," Briefings in Bioinformatics, Vol. 26, No. 4, bbaf355, 2025.
doi:10.1093/bib/bbaf355

43. Singh, Amrit, Casey P. Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, Scott J. Tebbutt, and Kim-Anh Lê Cao, "DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays," Bioinformatics, Vol. 35, No. 17, 3055-3062, 2019.
doi:10.1093/bioinformatics/bty1054

44. Zheng, Yuanting, Yaqing Liu, Jingcheng Yang, Lianhua Dong, Rui Zhang, Sha Tian, Ying Yu, Luyao Ren, Wanwan Hou, Feng Zhu, et al., "Multi-omics data integration using ratio-based quantitative profiling with quartet reference materials," Nature Biotechnology, Vol. 42, No. 7, 1133-1149, 2024.
doi:10.1038/s41587-023-01934-1

45. El Kazwini, Nour and Guido Sanguinetti, "SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data," Genome Biology, Vol. 25, No. 1, 55, 2024.
doi:10.1186/s13059-024-03180-3

46. Wang, Tongxin, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, and Kun Huang, "MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification," Nature Communications, Vol. 12, No. 1, 3445, 2021.
doi:10.1038/s41467-021-23774-w

47. Chandola, Varun, Arindam Banerjee, and Vipin Kumar, "Anomaly detection: A survey," ACM Computing Surveys (CSUR), Vol. 41, No. 3, 1-58, 2009.
doi:10.1145/1541880.1541882

48. Betzig, Eric, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S. Bonifacino, Michael W. Davidson, Jennifer Lippincott-Schwartz, and Harald F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, No. 5793, 1642-1645, 2006.
doi:10.1126/science.1127344

49. Rust, Michael J., Mark Bates, and Xiaowei Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods, Vol. 3, No. 10, 793-796, 2006.
doi:10.1038/nmeth929

50. Nitta, Nao, Takeaki Sugimura, Akihiro Isozaki, Hideharu Mikami, Kei Hiraki, Shinya Sakuma, Takanori Iino, Fumihito Arai, Taichiro Endo, Yasuhiro Fujiwaki, et al., "Intelligent image-activated cell sorting," Cell, Vol. 175, No. 1, 266-276, 2018.
doi:10.1016/j.cell.2018.08.028

51. Ding, Tianben, Kelvin C. M. Lee, Kevin K. Tsia, T. Nicolai Siegel, Dino Di Carlo, and Keisuke Goda, "Image-activated cell sorting," Nature Reviews Bioengineering, Vol. 3, No. 10, 890-907, 2025.
doi:10.1038/s44222-025-00334-1

52. Popescu, Gabriel, Takahiro Ikeda, Ramachandra R. Dasari, and Michael S. Feld, "Diffraction phase microscopy for quantifying cell structure and dynamics," Optics Letters, Vol. 31, No. 6, 775-777, 2006.
doi:10.1364/ol.31.000775

53. Ahrens, Misha B., Michael B. Orger, Drew N. Robson, Jennifer M. Li, and Philipp J. Keller, "Whole-brain functional imaging at cellular resolution using light-sheet microscopy," Nature Methods, Vol. 10, No. 5, 413-420, 2013.
doi:10.1038/nmeth.2434

54. Thomson, Eric E., Mark Harfouche, Kanghyun Kim, Pavan C. Konda, Catherine W. Seitz, Colin Cooke, Shiqi Xu, Whitney S. Jacobs, Robin Blazing, Yang Chen, et al., "Gigapixel imaging with a novel multi-camera array microscope," eLife, Vol. 11, e74988, 2022.
doi:10.7554/elife.74988

55. Maslov, Konstantin, Hao F. Zhang, Song Hu, and Lihong V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Optics Letters, Vol. 33, No. 9, 929-931, 2008.
doi:10.1364/ol.33.000929

56. Kanno, Hiroshi, Fan Li, Jongchan Park, Hidenori Endo, Kuniyasu Niizuma, Liang Gao, and Keisuke Goda, "High-speed fluorescence lifetime imaging microscopy: Techniques, applications, and prospects," Biophotonics Discovery, Vol. 2, No. 3, 030901, 2025.
doi:10.1117/1.bios.2.3.030901

57. Torrado, Belen, Bruno Pannunzio, Leonel Malacrida, and Michelle A. Digman, "Fluorescence lifetime imaging microscopy," Nature Reviews Methods Primers, Vol. 4, No. 1, 80, 2024.
doi:10.1038/s43586-024-00358-8

58. Kanno, Hiroshi, Kotaro Hiramatsu, Hideharu Mikami, Atsushi Nakayashiki, Shota Yamashita, Arata Nagai, Kohki Okabe, Fan Li, Fei Yin, Keita Tominaga, et al., "High-throughput fluorescence lifetime imaging flow cytometry," Nature Communications, Vol. 15, No. 1, 7376, 2024.
doi:10.1038/s41467-024-51125-y

59. Zhou, Yuqi, Atsuhiro Nakagawa, Masahiro Sonoshita, Guillermo J. Tearney, Aydogan Ozcan, and Keisuke Goda, "Emergent photonics for cardiovascular health," Nature Photonics, Vol. 19, 671-680, 2025.
doi:10.1038/s41566-025-01714-0

60. Nishikawa, Masako, Hiroshi Kanno, Yuqi Zhou, Ting-Hui Xiao, Takuma Suzuki, Yuma Ibayashi, Jeffrey Harmon, Shigekazu Takizawa, Kotaro Hiramatsu, Nao Nitta, et al., "Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19," Nature Communications, Vol. 12, No. 1, 7135, 2021.
doi:10.1038/s41467-021-27378-2

61. Wang, Canran, Ehsan Shirzaei Sani, Chia-Ding Shih, Chwee Teck Lim, Joseph Wang, David G. Armstrong, and Wei Gao, "Wound management materials and technologies from bench to bedside and beyond," Nature Reviews Materials, Vol. 9, No. 8, 550-566, 2024.
doi:10.1038/s41578-024-00693-y

62. Gilbert, Fiona J., Lorraine Tucker, and Ken C. Young, "Digital breast tomosynthesis (DBT): A review of the evidence for use as a screening tool," Clinical Radiology, Vol. 71, No. 2, 141-150, 2016.
doi:10.1016/j.crad.2015.11.008

63. The National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening," New England Journal of Medicine, Vol. 365, No. 5, 395-409, 2011.
doi:10.1056/nejmoa1102873

64. Azoulay, Pierre, Joshua S. Graff Zivin, and Gustavo Manso, "Incentives and creativity: Evidence from the academic life sciences," The RAND Journal of Economics, Vol. 42, No. 3, 527-554, 2011.
doi:10.1111/j.1756-2171.2011.00140.x

65. Fortin, Jean-Michel and David J. Currie, "Big science vs. little science: How scientific impact scales with funding," PLOS One, Vol. 8, No. 6, e65263, 2013.
doi:10.1371/journal.pone.0065263

66. Heinze, Thomas, Philip Shapira, Juan D. Rogers, and Jacqueline M. Senker, "Organizational and institutional influences on creativity in scientific research," Research Policy, Vol. 38, No. 4, 610-623, 2009.
doi:10.1016/j.respol.2009.01.014

67. Rhoten, Diana and Andrew Parker, "Risks and rewards of an interdisciplinary research path," Science, Vol. 306, No. 5704, 2046, 2004.
doi:10.1126/science.1103628

68. Van Noorden, Richard, "Interdisciplinary research by the numbers," Nature, Vol. 525, No. 7569, 306-307, 2015.
doi:10.1038/525306a

69. Ioannidis, John P. A., "How to make more published research true," PLOS Medicine, Vol. 11, No. 10, e1001747, 2015.
doi:10.1371/journal.pmed.1001747

70. Nosek, Brian A., G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G. Chin, G. Christensen, et al., "Promoting an open research culture," Science, Vol. 348, No. 6242, 1422-1425, 2015.
doi:10.1126/science.aab2374

71. Wang, Jian, Reinhilde Veugelers, and Paula Stephan, "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Vol. 46, No. 8, 1416-1436, 2017.
doi:10.1016/j.respol.2017.06.006

72. Wilkinson, Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, et al., "The FAIR Guiding Principles for scientific data management and stewardship," Scientific Data, Vol. 3, No. 1, 160018, 2016.
doi:10.1038/sdata.2016.18