1. Forbes, Andrew, Michael de Oliveira, and Mark R. Dennis, "Structured light," Nature Photonics, Vol. 15, No. 4, 253-262, 2021.
doi:10.1038/s41566-021-00780-4 Google Scholar
2. Zhan, Qiwen, "Spatiotemporal sculpturing of light: A tutorial," Advances in Optics and Photonics, Vol. 16, No. 2, 163-228, 2024.
doi:10.1364/aop.507558 Google Scholar
3. Yang, Yiqian, Andrew Forbes, and Liangcai Cao, "A review of liquid crystal spatial light modulators: Devices and applications," Opto-Electronic Science, Vol. 2, No. 8, 230026, 2023.
doi:10.29026/oes.2023.230026 Google Scholar
4. Dorrah, Ahmed H. and Federico Capasso, "Tunable structured light with flat optics," Science, Vol. 376, No. 6591, eabi6860, 2022.
doi:10.1126/science.abi6860 Google Scholar
5. Forbes, Andrew and Isaac Nape, "Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light," AVS Quantum Science, Vol. 1, No. 1, 011701, 2019.
doi:10.1116/1.5112027 Google Scholar
6. Nape, Isaac, Bereneice Sephton, Pedro Ornelas, Chane Moodley, and Andrew Forbes, "Quantum structured light in high dimensions," APL Photonics, Vol. 8, No. 5, 051101, 2023.
doi:10.1063/5.0138224 Google Scholar
7. Paúr, Martin, Bohumil Stoklasa, Zdenek Hradil, Luis L. Sánchez-Soto, and Jaroslav Rehacek, "Achieving the ultimate optical resolution," Optica, Vol. 3, No. 10, 1144-1147, 2016.
doi:10.1364/optica.3.001144 Google Scholar
8. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Physical Review Letters, Vol. 91, No. 23, 233901, Dec. 2003.
doi:10.1103/physrevlett.91.233901 Google Scholar
9. Willner, Alan E., Kai Pang, Hao Song, Kaiheng Zou, and Huibin Zhou, "Orbital angular momentum of light for communications," Applied Physics Reviews, Vol. 8, No. 4, 041312, 2021.
doi:10.1063/5.0054885 Google Scholar
10. Angelsky, Oleg V., Aleksandr Y. Bekshaev, Steen G. Hanson, Claudia Yu Zenkova, Igor I. Mokhun, and Jun Zheng, "Structured light: Ideas and concepts," Frontiers in Physics, Vol. 8, 114, 2020.
doi:10.3389/fphy.2020.00114 Google Scholar
11. Wang, Jian and Yize Liang, "Generation and detection of structured light: A review," Frontiers in Physics, Vol. 9, 688284, 2021.
doi:10.3389/fphy.2021.688284 Google Scholar
12. Cheng, Mingjian, Wenjie Jiang, Lixin Guo, Jiangting Li, and Andrew Forbes, "Metrology with a twist: Probing and sensing with vortex light," Light: Science & Applications, Vol. 14, No. 1, 4, 2025.
doi:10.1038/s41377-024-01665-1 Google Scholar
13. Forbes, Andrew, "Structured light from lasers," Laser & Photonics Reviews, Vol. 13, No. 11, 1900140, 2019.
doi:10.1002/lpor.201900140 Google Scholar
14. Forbes, Andrew, Light Mkhumbuza, and Liang Feng, "Orbital angular momentum lasers," Nature Reviews Physics, Vol. 6, No. 6, 352-364, 2024.
doi:10.1038/s42254-024-00715-2 Google Scholar
15. Buono, Wagner Tavares and Andrew Forbes, "Nonlinear optics with structured light," Opto-Electronic Advances, Vol. 5, No. 6, 210174, 2022.
doi:10.29026/oea.2022.210174 Google Scholar
16. Fang, Yiqi, Zijian Lyu, and Yunquan Liu, "Ultrafast physics with structured light," Nature Reviews Physics, Vol. 7, 713-727, 2025.
doi:10.1038/s42254-025-00887-5 Google Scholar
17. Martín-Hernández, Rodrigo, Guan Gui, Luis Plaja, Henry C. Kapteyn, Margaret M. Murnane, Chen-Ting Liao, Miguel A. Porras, and Carlos Hernández-García, "Extreme-ultraviolet spatiotemporal vortices via high harmonic generation," Nature Photonics, Vol. 19, 817-824, 2025.
doi:10.1038/s41566-025-01699-w Google Scholar
18. Harrison, Justin, Darryl Naidoo, Andrew Forbes, and Angela Dudley, "Progress in high-power and high-intensity structured light," Advances in Physics: X, Vol. 9, No. 1, 2327453, 2024.
doi:10.1080/23746149.2024.2327453 Google Scholar
19. Carbajo, Sergio, Seung-Whan Bahk, Justin Baker, Andrea Bertozzi, Abhimanyu Borthakur, Antonino Di Piazza, Andrew Forbes, Spencer Gessner, Jack Hirschman, et al. "Structured light at the extreme: Harnessing spatiotemporal control for high-field laser-matter interactions," arXiv preprint arXiv:2512.05042, 2025.
doi:10.48550/arXiv.2512.05042 Google Scholar
20. Forbes, Andrew, Fazilah Nothlawala, and Adam Vallés, "Progress in quantum structured light," Nature Photonics, Vol. 19, 1291-1300, 2025.
doi:10.1038/s41566-025-01795-x Google Scholar
21. Boyd, R. W., Nonlinear Optics, 3rd Ed., 253-275, Academic Press, Burlington, 2008.
22. Kovacic, Ivana and Michael J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, John Wiley & Sons, 2011.
23. New, Geoffrey, Introduction to Nonlinear Optics, Cambridge University Press, 2011.
doi:10.1017/cbo9780511975851
24. Barh, Ajanta, Peter John Rodrigo, Lichun Meng, Christian Pedersen, and Peter Tidemand-Lichtenberg, "Parametric upconversion imaging and its applications," Advances in Optics and Photonics, Vol. 11, No. 4, 952-1019, 2019.
doi:10.1364/aop.11.000952 Google Scholar
25. Emanueli, Shai and Ady Arie, "Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4," Applied Optics, Vol. 42, No. 33, 6661-6665, 2003.
doi:10.1364/ao.42.006661 Google Scholar
26. Ma, Jianan, Xiaoyan Cheng, Ningchong Zheng, Pengcheng Chen, Xiaoyi Xu, Tianxin Wang, Dunzhao Wei, Yuefeng Nie, Shining Zhu, Min Xiao, and Yong Zhang, "Fabrication of 100-nm-period domain structure in lithium niobate on insulator," Optics Express, Vol. 31, No. 23, 37464-37471, 2023.
doi:10.1364/oe.501804 Google Scholar
27. Singh, Sachleen, Isaac Nape, and Andrew Forbes, "Enhanced fidelity in nonlinear structured light by virtual light-based apertures," Optics Express, Vol. 33, No. 13, 27615-27625, 2025.
doi:10.1364/oe.562028 Google Scholar
28. De Oliveira, A. G., G. Santos, N. Rubiano da Silva, L. J. Pereira, G. B. Alves, A. Z. Khoury, and P. H. Souto Ribeiro, "Beyond conservation of orbital angular momentum in stimulated parametric down-conversion," Physical Review Applied, Vol. 16, No. 4, 044019, 2021.
doi:10.1103/physrevapplied.16.044019 Google Scholar
29. Yao, Alison M. and Miles J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Advances in Optics and Photonics, Vol. 3, No. 2, 161-204, 2011.
doi:10.1364/aop.3.000161 Google Scholar
30. Chaitanya, N. Apurv, M. V. Jabir, J. Banerji, and G. K. Samanta, "Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum," Scientific Reports, Vol. 6, No. 1, 32464, 2016.
doi:10.1038/srep32464 Google Scholar
31. Weiss, Tim F. and Alberto Peruzzo, "Nonlinear domain engineering for quantum technologies," Applied Physics Reviews, Vol. 12, No. 1, 011318, 2025.
doi:10.1063/5.0223013 Google Scholar
32. Pertsch, Thomas and Yuri Kivshar, "Nonlinear optics with resonant metasurfaces," MRS Bulletin, Vol. 45, No. 3, 210-220, 2020.
doi:10.1557/mrs.2020.65 Google Scholar
33. Litchinitser, Natalia M., "Structured light meets structured matter," Science, Vol. 337, No. 6098, 1054-1055, 2012.
doi:10.1126/science.1226204 Google Scholar
34. Trajtenebrg-Mills, Sivan and Ady Arie, "Shaping light beams in nonlinear processes using structured light and patterned crystals," Optical Materials Express, Vol. 7, No. 8, 2928-2942, 2017.
doi:10.1364/ome.7.002928 Google Scholar
35. Liu, Haigang and Xianfeng Chen, "The manipulation of second-order nonlinear harmonic wave by structured material and structured light," Journal of Nonlinear Optical Physics & Materials, Vol. 27, No. 4, 1850047, 2018.
doi:10.1142/s0218863518500479 Google Scholar
36. Disa, Ankit S., Tobia F. Nova, and Andrea Cavalleri, "Engineering crystal structures with light," Nature Physics, Vol. 17, No. 10, 1087-1092, 2021.
doi:10.1038/s41567-021-01366-1 Google Scholar
37. Yanagimoto, Ryotatsu, Benjamin A. Ash, Mandar M. Sohoni, Martin M. Stein, Yiqi Zhao, Federico Presutti, Marc Jankowski, Logan G. Wright, Tatsuhiro Onodera, and Peter L. McMahon, "Programmable on-chip nonlinear photonics," Nature, 1-8, 2025.
doi:10.1038/s41586-025-09620-9 Google Scholar
38. Qiu, Xiaodong, Fangshu Li, Wuhong Zhang, Zhihan Zhu, and Lixiang Chen, "Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination," Optica, Vol. 5, No. 2, 208-212, 2018.
doi:10.1364/optica.5.000208 Google Scholar
39. Hong, Ling, Fei Lin, Xiaodong Qiu, and Lixiang Chen, "Second harmonic generation based joint transform correlator for human face and QR code recognitions," Applied Physics Letters, Vol. 116, No. 23, 231101, 2020.
doi:10.1063/5.0001301 Google Scholar
40. De Oliveira, André G., Marcelo F. Z. Arruda, Willamys C. Soares, Stephen P. Walborn, Rafael M. Gomes, Renné Medeiros de Araújo, and Paulo H. Souto Ribeiro, "Real-time phase conjugation of vector vortex beams," ACS Photonics, Vol. 7, No. 1, 249-255, 2020.
doi:10.1021/acsphotonics.9b01524 Google Scholar
41. Zhu, Zhanghang, Di Zhang, Fei Xie, Junjun Ma, Jiaxin Chen, Shengchao Gong, Wei Wu, Wei Cai, Xinzheng Zhang, Mengxin Ren, and Jingjun Xu, "Nonlinear polarization imaging by parametric upconversion," Optica, Vol. 9, No. 11, 1297-1302, 2022.
doi:10.1364/optica.471177 Google Scholar
42. Jhajj, N., I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, "Spatiotemporal optical vortices," Physical Review X, Vol. 6, No. 3, 031037, 2016.
doi:10.1103/physrevx.6.031037 Google Scholar
43. Yusufu, Taximaiti, Sujian Niu, Paerhatijiang Tuersun, Yusufu Tulake, Katsuhiko Miyamoto, and Takashige Omatsu, "Tunable 3 µm optical vortex parametric oscillator," Japanese Journal of Applied Physics, Vol. 57, No. 12, 122701, 2018.
doi:10.7567/jjap.57.122701 Google Scholar
44. Gibbs, Hyatt, Optical Bistability: Controlling Light With Light, Elsevier, 2012.
doi:10.1063/1.2820150
45. Desyatnikov, A. S. and A. I. Maimistov, "Interaction of two spatially separated light beams in a nonlinear Kerr medium," Journal of Experimental and Theoretical Physics, Vol. 86, No. 6, 1101-1106, 1998.
doi:10.1134/1.558578 Google Scholar
46. Pura, B., J. Petykiewicz, L. Adamowicz, W. Jeda, M. Wierzbicki, and K. Brudzewski, "Polarisation control of light by light in a nonlinear polymer," Applied Physics B, Vol. 67, No. 2, 211-215, 1998.
doi:10.1007/s003400050495 Google Scholar
47. Zhang, Jianfa, Kevin F. MacDonald, and Nikolay I. Zheludev, "Controlling light-with-light without nonlinearity," Light: Science & Applications, Vol. 1, No. 7, e18, 2012.
doi:10.1038/lsa.2012.18 Google Scholar
48. Dholakia, K., N. B. Simpson, M. J. Padgett, and L. Allen, "Second-harmonic generation and the orbital angular momentum of light," Physical Review A, Vol. 54, No. 5, R3742, 1996.
doi:10.1103/physreva.54.r3742 Google Scholar
49. Wu, Hai-Jun, Hao-Ran Yang, Carmelo Rosales-Guzmán, Wei Gao, Bao-Sen Shi, and Zhi-Han Zhu, "Vectorial nonlinear optics: Type-II second-harmonic generation driven by spin-orbit-coupled fields," Physical Review A, Vol. 100, No. 5, 053840, 2019.
doi:10.1103/physreva.100.053840 Google Scholar
50. Wang, Jinwen, Francesco Castellucci, and Sonja Franke-Arnold, "Vectorial light-matter interaction: Exploring spatially structured complex light fields," AVS Quantum Science, Vol. 2, No. 3, 031702, 2020.
doi:10.1116/5.0016007 Google Scholar
51. Wright, Logan G., William H. Renninger, Demetri N. Christodoulides, and Frank W. Wise, "Nonlinear multimode photonics: Nonlinear optics with many degrees of freedom," Optica, Vol. 9, No. 7, 824-841, 2022.
doi:10.1364/optica.461981 Google Scholar
52. Buono, W. T., A. Santos, M. R. Maia, L. J. Pereira, D. S. Tasca, K. Dechoum, T. Ruchon, and A. Z. Khoury, "Chiral relations and radial-angular coupling in nonlinear interactions of optical vortices," Physical Review A, Vol. 101, No. 4, 043821, 2020.
doi:10.1103/physreva.101.043821 Google Scholar
53. Wu, Hai-Jun, Li-Wei Mao, Yuan-Jie Yang, Carmelo Rosales-Guzmán, Wei Gao, Bao-Sen Shi, and Zhi-Han Zhu, "Radial modal transitions of Laguerre-Gauss modes during parametric up-conversion: Towards the full-field selection rule of spatial modes," Physical Review A, Vol. 101, No. 6, 063805, 2020.
doi:10.1103/physreva.101.063805 Google Scholar
54. Yang, Hao-Ran, Hai-Jun Wu, Wei Gao, Carmelo Rosales-Guzmán, and Zhi-Han Zhu, "Parametric upconversion of Ince-Gaussian modes," Optics Letters, Vol. 45, No. 11, 3034-3037, 2020.
doi:10.1364/ol.393146 Google Scholar
55. Steinlechner, Fabian, Nathaniel Hermosa, Valerio Pruneri, and Juan P. Torres, "Frequency conversion of structured light," Scientific Reports, Vol. 6, No. 1, 21390, 2016.
doi:10.1038/srep21390 Google Scholar
56. Zdagkas, Apostolos, Cormac McDonnell, Junhong Deng, Yijie Shen, Guixin Li, Tal Ellenbogen, Nikitas Papasimakis, and Nikolay I. Zheludev, "Observation of toroidal pulses of light," Nature Photonics, Vol. 16, No. 7, 523-528, 2022.
doi:10.1038/s41566-022-01028-5 Google Scholar
57. Abrahao, Raphael A., Henri P. N. Morin, Jordan T. R. Pagé, Akbar Safari, Robert W. Boyd, and Jeff S. Lundeen, "Shadow of a laser beam," Optica, Vol. 11, No. 11, 1549-1555, 2024.
doi:10.1364/optica.534596 Google Scholar
58. Fickler, R., L. Kopf, and M. Ornigotti, "Higher-order Poincaré spheres and spatiospectral Poincaré beams," Physical Review Research, Vol. 6, No. 3, 033298, 2024.
doi:10.1103/physrevresearch.6.033298 Google Scholar
59. Gariepy, G., Conservation of orbital angular momentum in high-harmonic generation, University of Ottawa, Ottawa, Canada, 2013.
60. Rego, Laura, Kevin M. Dorney, Nathan J. Brooks, Quynh L. Nguyen, Chen-Ting Liao, Julio San Román, David E. Couch, Allison Liu, Emilio Pisanty, Maciej Lewenstein, et al. "Generation of extreme-ultraviolet beams with time-varying orbital angular momentum," Science, Vol. 364, No. 6447, eaaw9486, 2019.
doi:10.1126/science.aaw9486 Google Scholar
61. Li, X. F., A. L'Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, "Multiple-harmonic generation in rare gases at high laser intensity," Physical Review A, Vol. 39, No. 11, 5751, 1989.
doi:10.1103/physreva.39.5751 Google Scholar
62. Gao, Jingsong, Xiang Zhang, Yang Wang, Yiqi Fang, Qi Lu, Zheng Li, Yi Liu, Chengyin Wu, Qihuang Gong, Yunquan Liu, and Hongbing Jiang, "Structured air lasing of N2+," Communications Physics, Vol. 6, No. 1, 97, 2023.
doi:10.1038/s42005-023-01226-9 Google Scholar
63. Srinivasa Rao, A., Katsuhiko Miamoto, and Takashige Omatsu, "Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser," Optics Express, Vol. 28, No. 25, 37397-37405, 2020.
doi:10.1364/OE.411624 Google Scholar
64. Alam, Sabir Ul, A. Srinivasa Rao, Anirban Ghosh, Pravin Vaity, and G. K. Samanta, "Nonlinear frequency doubling characteristics of asymmetric vortices of tunable, broad orbital angular momentum spectrum," Applied Physics Letters, Vol. 112, No. 17, 171102, 2018.
doi:10.1063/1.5024445 Google Scholar
65. Pan, Jin-Tao, Bo-Han Zhu, Ling-Ling Ma, Wei Chen, Guang-Yang Zhang, Jie Tang, Yuan Liu, Yang Wei, Chao Zhang, Zhi-Han Zhu, et al. "Nonlinear geometric phase coded ferroelectric nematic fluids for nonlinear soft-matter photonics," Nature Communications, Vol. 15, No. 1, 8732, 2024.
doi:10.1038/s41467-024-53040-8 Google Scholar
66. De Ceglia, Domenico, Laure Coudrat, Iännis Roland, Maria Antonietta Vincenti, Michael Scalora, Rana Tanos, Julien Claudon, Jean-Michel Gérard, Aloyse Degiron, Giuseppe Leo, and Costantino De Angelis, "Nonlinear spin-orbit coupling in optical thin films," Nature Communications, Vol. 15, No. 1, 1625, 2024.
doi:10.1038/s41467-024-45607-2 Google Scholar
67. Ren, Zhi-Cheng, Yan-Chao Lou, Zi-Mo Cheng, Li Fan, Jianping Ding, Xi-Lin Wang, and Hui-Tian Wang, "Optical frequency conversion of light with maintaining polarization and orbital angular momentum," Optics Letters, Vol. 46, No. 10, 2300-2303, 2021.
doi:10.1364/ol.419753 Google Scholar
68. Pinheiro da Silva, Braian, Wagner T. Buono, Leonardo J. Pereira, Daniel S. Tasca, Kaled Dechoum, and Antonio Z. Khoury, "Spin to orbital angular momentum transfer in frequency up-conversion," Nanophotonics, Vol. 11, No. 4, 771-778, 2022.
doi:10.1515/nanoph-2021-0493 Google Scholar
69. Samim, Masood, Serguei Krouglov, and Virginijus Barzda, "Nonlinear stokes-mueller polarimetry," Physical Review A, Vol. 93, No. 1, 013847, 2016.
doi:10.1103/physreva.93.013847 Google Scholar
70. Chen, Huifeng, Guanyu Liu, Shuang Zhang, Yongchun Zhong, Jianhui Yu, Zhe Chen, and Wenguo Zhu, "Spin Hall effect of nonlinear photons," Laser & Photonics Reviews, Vol. 17, No. 5, 2200681, 2023.
doi:10.1002/lpor.202200681 Google Scholar
71. Tang, Yutao, Zixian Hu, Junhong Deng, Kingfai Li, and Guixin Li, "Sequential harmonic spin-orbit angular momentum generation in nonlinear optical crystals," Opto-Electronic Advances, Vol. 7, No. 12, 240138, 2025.
doi:10.29026/oea.2024.240138 Google Scholar
72. Tang, Y., K. Li, X. Zhang, J. Deng, G. Li, and E. Brasselet, "Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals," Nature Photonics, Vol. 14, No. 11, 658-662, 2020.
doi:10.1038/s41566-020-0691-0 Google Scholar
73. Li, Yan, Zhi-Yuan Zhou, Dong-Sheng Ding, and Bao-Sen Shi, "Sum frequency generation with two orbital angular momentum carrying laser beams," Journal of the Optical Society of America B, Vol. 32, No. 3, 407-411, 2015.
doi:10.1364/josab.32.000407 Google Scholar
74. Aguilar-Cardoso, A. A., C. Li, T. J. B. Luck, M. F. Ferrer-Garcia, J. Upham, J. S. Lundeen, and R. W. Boyd, "Tailoring spatial modes produced by stimulated parametric down-conversion," Physical Review A, Vol. 112, No. 4, 043541, 2025.
doi:10.1103/g22l-cgr1 Google Scholar
75. Wu, H.-J., B.-S. Yu, J.-Q. Jiang, C.-Y. Li, C. Rosales-Guzmán, S.-L. Liu, Z.-H. Zhu, and B.-S. Shi, "Observation of anomalous orbital angular momentum transfer in parametric nonlinearity," Physical Review Letters, Vol. 130, No. 15, 153803, 2023.
doi:10.1103/physrevlett.130.153803 Google Scholar
76. Kumar, Subith, Ravi K. Saripalli, Anirban Ghosh, Wagner T. Buono, Andrew Forbes, and G. K. Samanta, "Controlling the coverage of full Poincaré beams through second-harmonic generation," Physical Review Applied, Vol. 19, No. 3, 034082, 2023.
doi:10.1103/physrevapplied.19.034082 Google Scholar
77. Liu, Haigang, Hui Li, Yuanlin Zheng, and Xianfeng Chen, "Nonlinear frequency conversion and manipulation of vector beams," Optics Letters, Vol. 43, No. 24, 5981-5984, 2018.
doi:10.1364/ol.43.005981 Google Scholar
78. Luttmann, M., M. Vimal, M. Guer, J.-F. Hergott, A. Z. Khoury, C. Hernández-García, E. Pisanty, and T. Ruchon, "Nonlinear up-conversion of a polarization möbius strip with half-integer optical angular momentum," Science Advances, Vol. 9, No. 12, eadf3486, 2023.
doi:10.1126/sciadv.adf3486 Google Scholar
79. Da Motta, M. R. L., G. B. Alves, A. Z. Khoury, and S. S. Vianna, "Poincaré-sphere symmetries in four-wave mixing with orbital angular momentum," Physical Review A, Vol. 109, No. 1, 013506, 2024.
doi:10.1103/physreva.109.013506 Google Scholar
80. Pan, Churong, Huangjie Li, Hao Pang, Ruibo Ru, Sannv Zhang, Dong Wei, Haixia Chen, Hong Gao, and Fuli Li, "Generation and manipulation of spin-orbit coupling mode via four-wave mixing with quantum interference," Laser & Photonics Reviews, Vol. 18, No. 2, 2300625, 2024.
doi:10.1002/lpor.202300625 Google Scholar
81. Pan, Churong, Huangjie Li, Xuzhe Zhang, Yanzhe Liu, Lianglong Wu, Hao Pang, Haixia Chen, Dong Wei, Hong Gao, and Fuli Li, "All-optical controlled multichannel nonlinear holography for switchable beam shaping in an atomic vapor," Optica, Vol. 12, No. 7, 1054-1060, 2025.
doi:10.1364/optica.559378 Google Scholar
82. Yuan, Jinpeng, Xuewen Wang, Gang Chen, Lirong Wang, Liantuan Xiao, and Suotang Jia, "High-fidelity frequency converter in high-dimensional spaces," Laser & Photonics Reviews, Vol. 18, No. 11, 2400368, 2024.
doi:10.1002/lpor.202400368 Google Scholar
83. Gao, Wei, Sandan Wang, Jinpeng Yuan, Lirong Wang, Liantuan Xiao, and Suotang Jia, "High-contrast nonlinear spiral phase contrast imaging via four-wave mixing in atomic medium," Optics Express, Vol. 33, No. 18, 38382-38391, 2025.
doi:10.1364/oe.572157 Google Scholar
84. Bornman, Nicholas, Wagner Tavares Buono, Michael Lovemore, and Andrew Forbes, "Optimal pump shaping for entanglement control in any countable basis," Advanced Quantum Technologies, Vol. 4, No. 10, 2100066, 2021.
doi:10.1002/qute.202100066 Google Scholar
85. Jabir, M. V., N. Apurv Chaitanya, A. Aadhi, and G. K. Samanta, "Generation of ``perfect'' vortex of variable size and its effect in angular spectrum of the down-converted photons," Scientific Reports, Vol. 6, No. 1, 21877, 2016.
doi:10.1038/srep21877 Google Scholar
86. Nirala, Gaurav, Siva T. Pradyumna, Ashok Kumar, and Alberto M. Marino, "Information encoding in the spatial correlations of entangled twin beams," Science Advances, Vol. 9, No. 22, eadf9161, 2023.
doi:10.1126/sciadv.adf9161 Google Scholar
87. Rozenberg, E., A. Karnieli, O. Yesharim, J. Foley-Comer, S. Trajtenberg-Mills, D. Freedman, A. M. Bronstein, and A. Arie, "Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits," Optica, Vol. 9, No. 6, 602-615, 2022.
doi:10.1364/optica.451115 Google Scholar
88. Kysela, J., M. Erhard, A. Hochrainer, M. Krenn, and A. Zeilinger, "Path identity as a source of high-dimensional entanglement," Proceedings of the National Academy of Sciences, Vol. 117, No. 42, 26 118-26 122, 2020.
doi:10.1073/pnas.2011405117 Google Scholar
89. Trovatello, Chiara, Andrea Marini, Michele Cotrufo, Andrea Alù, P. James Schuck, and Giulio Cerullo, "Tunable optical nonlinearities in layered materials," ACS Photonics, Vol. 11, No. 8, 2860-2873, 2024.
doi:10.1021/acsphotonics.4c00521 Google Scholar
90. Yesharim, O., I. Hurvitz, J. Foley-Comer, and A. Arie, "Bulk nonlinear metamaterials for generation of quantum light," Applied Physics Reviews, Vol. 12, No. 1, 011323, 2025.
doi:10.1063/5.0216714 Google Scholar
91. Huang, Jianming Huang and Prem Kumar, "Observation of quantum frequency conversion," Physical Review Letters, Vol. 68, 2153, 1992.
doi:10.1103/PhysRevLett.68.2153 Google Scholar
92. Vandevender, Aaron P. and Paul G. Kwiat, "High efficiency single photon detection via frequency up-conversion," Journal of Modern Optics, Vol. 51, No. 9-10, 1433-1445, 2004.
doi:10.1080/09500340408235283 Google Scholar
93. Zaske, Sebastian, Andreas Lenhard, Christian A. Keßler, Jan Kettler, Christian Hepp, Carsten Arend, Roland Albrecht, Wolfgang-Michael Schulz, Michael Jetter, Peter Michler, and Christoph Becher, "Visible-to-telecom quantum frequency conversion of light from a single quantum emitter," Physical Review Letters, Vol. 109, No. 14, 147404, 2012.
doi:10.1103/physrevlett.109.147404 Google Scholar
94. Ansari, Vahid, John M. Donohue, Benjamin Brecht, and Christine Silberhorn, "Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings," Optica, Vol. 5, No. 5, 534-550, 2018.
doi:10.1364/optica.5.000534 Google Scholar
95. Eckstein, Andreas, Benjamin Brecht, and Christine Silberhorn, "A quantum pulse gate based on spectrally engineered sum frequency generation," Optics Express, Vol. 19, No. 15, 13770-13778, 2011.
doi:10.1364/oe.19.013770 Google Scholar
96. Ansari, V., J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, "Tomography and purification of the temporal-mode structure of quantum light," Physical Review Letters, Vol. 120, No. 21, 213601, 2018.
doi:10.1103/physrevlett.120.213601 Google Scholar
97. Serino, L., J. Gil-Lopez, M. Stefszky, R. Ricken, C. Eigner, B. Brecht, and C. Silberhorn, "Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states," PRX Quantum, Vol. 4, No. 2, 020306, 2023.
doi:10.1103/prxquantum.4.020306 Google Scholar
98. Serino, L., C. Eigner, B. Brecht, and C. Silberhorn, "Programmable time-frequency mode-sorting of single photons with a multi-output quantum pulse gate," Optics Express, Vol. 33, No. 3, 5577-5586, 2025.
doi:10.1364/oe.544206 Google Scholar
99. Donohue, John M., Megan Agnew, Jonathan Lavoie, and Kevin J. Resch, "Coherent ultrafast measurement of time-bin encoded photons," Physical Review Letters, Vol. 111, 153602, 2013.
doi:10.1103/physrevlett.111.153602 Google Scholar
100. Allgaier, M., V. Ansari, J. M. Donohue, C. Eigner, V. Quiring, R. Ricken, B. Brecht, and C. Silberhorn, "Pulse shaping using dispersion-engineered difference frequency generation," Physical Review A, Vol. 101, No. 4, 043819, 2020.
doi:10.1103/physreva.101.043819 Google Scholar
101. Sephton, B., A. Vallés, I. Nape, M. A. Cox, F. Steinlechner, T. Konrad, J. P. Torres, F. S. Roux, and A. Forbes, "Quantum transport of high-dimensional spatial information with a nonlinear detector," Nature Communications, Vol. 14, No. 1, 8243, 2023.
doi:10.1038/s41467-023-43949-x Google Scholar
102. Qiu, Xiaodong, Haoxu Guo, and Lixiang Chen, "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Vol. 14, No. 1, 8244, 2023.
doi:10.1038/s41467-023-43950-4 Google Scholar
103. Tsujimoto, Yoshiaki, Kentaro Wakui, Tadashi Kishimoto, Shigehito Miki, Masahiro Yabuno, Hirotaka Terai, Mikio Fujiwara, and Go Kato, "Experimental entanglement swapping through single-photon χ(2) nonlinearity," Nature Communications, Vol. 16, No. 1, 8720, 2025.
doi:10.1038/s41467-025-63785-5 Google Scholar
104. Akin, J., Y. Zhao, P. G. Kwiat, E. A. Goldschmidt, and K. Fang, "Faithful quantum teleportation via a nanophotonic nonlinear bell state analyzer," Physical Review Letters, Vol. 134, No. 16, 160802, 2025.
doi:10.1103/physrevlett.134.160802 Google Scholar
105. Ackermann, Lisa, Clemens Roider, Kristian Cvecek, Nicolas Barré, Christian Aigner, and Michael Schmidt, "Polarization-controlled nonlinear computer-generated holography," Scientific Reports, Vol. 13, No. 1, 10338, 2023.
doi:10.1038/s41598-023-37443-z Google Scholar
106. Tamura, Rihito, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, and Takashige Omatsu, "Direct imprint of optical skyrmions in azopolymers as photoinduced relief structures," APL Photonics, Vol. 9, No. 4, 046104, 2024.
doi:10.1063/5.0192239 Google Scholar
107. Trajtenberg-Mills, Sivan, Irit Juwiler, and Ady Arie, "On-axis shaping of second-harmonic beams," Laser & Photonics Reviews, Vol. 9, No. 6, L40-L44, 2015.
doi:10.1002/lpor.201500154 Google Scholar
108. Wang, Mingjie, Yang Li, Yutao Tang, Jiafei Chen, Rong Rong, Guixin Li, Tun Cao, and Shumei Chen, "Nonlinear chiroptical holography with Pancharatnam-Berry phase controlled plasmonic metasurface," Laser & Photonics Reviews, Vol. 16, No. 12, 2200350, 2022.
doi:10.1002/lpor.202200350 Google Scholar
109. Coudrat, Laure, Guillaume Boulliard, Jean-Michel Gérard, Aristide Lemaître, Aloyse Degiron, and Giuseppe Leo, "Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces," Light: Science & Applications, Vol. 14, No. 1, 51, 2025.
doi:10.1038/s41377-025-01741-0 Google Scholar
110. Rong, Rong, Yang Li, Mingjie Wang, Yutao Tang, Hongjie Xu, Kingfai Li, Guixin Li, Tun Cao, and Shumei Chen, "Beam steering of nonlinear optical vortices with phase gradient plasmonic metasurfaces," ACS Photonics, Vol. 10, No. 9, 3248-3254, 2023.
doi:10.1021/acsphotonics.3c00677 Google Scholar
111. Park, Seongjin, Jaeyeon Yu, Gerhard Boehm, Mikhail A. Belkin, and Jongwon Lee, "Electrically tunable third-harmonic generation using intersubband polaritonic metasurfaces," Light: Science & Applications, Vol. 13, No. 1, 169, 2024.
doi:10.1038/s41377-024-01517-y Google Scholar
112. Zhang, X., H. Li, S. Liu, Y. Chen, Z. Zhu, H. Liu, S. Zhu, and X. Hu, "Tailoring beam profile and oam spectrum in domain-engineered nonlinear photonic crystals," APL Photonics, Vol. 10, No. 1, 2025.
doi:10.1063/5.0245407 Google Scholar
113. Yang, Jia-Chen, Wei Chen, Ling-Ling Ma, An-Zhuo Yu, Jin-Tao Pan, Jin-Tao Fan, Ming-Lie Hu, and Yan-Qing Lu, "Nonlinear photon sieves for high-fidelity wavefront engineering," Laser & Photonics Reviews, Vol. 19, No. 22, e01117, 2025.
doi:10.1002/lpor.202501117 Google Scholar
114. Yesharim, O., S. Pearl, J. Foley-Comer, I. Juwiler, and A. Arie, "Direct generation of spatially entangled qudits using quantum nonlinear optical holography," Science Advances, Vol. 9, No. 8, eade7968, 2023.
doi:10.1126/sciadv.ade7968 Google Scholar
115. Ye, Zhiyuan, Wanting Hou, Chen-Xin Ding, Xue-Jiao Men, Run-Jie He, Jilun Zhao, Hai-Bo Wang, Jun Xiong, and Kaige Wang, "Random holography: Generating EPR-like correlation with thermal photons," Laser & Photonics Reviews, Vol. 19, No. 6, 2401610, 2025.
doi:10.1002/lpor.202401610 Google Scholar
116. Hou, Wanting, Run-Jie He, Zhiyuan Ye, Xue-Jiao Men, Chen-Xin Ding, Hong-Chao Liu, Hai-Bo Wang, and Jun Xiong, "Manipulating classical triple correlations for optical information processing and metrology," Photonics Research, Vol. 13, No. 8, 2073-2087, 2025.
doi:10.1364/prj.559681 Google Scholar
117. Lukens, Joseph M., Amir Dezfooliyan, Carsten Langrock, Martin M. Fejer, Daniel E. Leaird, and Andrew M. Weiner, "Orthogonal spectral coding of entangled photons," Physical Review Letters, Vol. 112, No. 13, 133602, 2014.
doi:10.1103/physrevlett.112.133602 Google Scholar
118. Xu, Y., S. Tang, A. Nicholas Black, and R. W. Boyd, "Orthogonal spatial coding with stimulated parametric down-conversion," Optics Express, Vol. 31, No. 25, 42 723-42 729, 2023.
doi:10.1364/oe.506383 Google Scholar
119. Qi, Tong, Yi-Zhe Chen, Ding Yan, and Wei Gao, "Wavefront-reversal, low-threshold, and enhanced stimulated brillouin scattering for arbitrary structured light," Laser & Photonics Reviews, Vol. 18, No. 6, 2301080, 2024.
doi:10.1002/lpor.202301080 Google Scholar
120. Singh, S., B. Sephton, W. Tavares Buono, V. D'Ambrosio, T. Konrad, and A. Forbes, "Light correcting light with nonlinear optics," Advanced Photonics, Vol. 6, No. 2, 026 003, 2024.
doi:10.1117/1.ap.6.2.026003 Google Scholar
121. Zhou, Huibin, Xinzhou Su, Yuxiang Duan, Yue Zuo, Zile Jiang, Muralekrishnan Ramakrishnan, Jan Tepper, Volker Ziegler, Robert W. Boyd, Moshe Tur, and Alan E. Willner, "Automatic mitigation of dynamic atmospheric turbulence using optical phase conjugation for coherent free-space optical communications," Optica, Vol. 12, No. 2, 158-167, 2025.
doi:10.1364/optica.541823 Google Scholar
122. Sánchez-Montes, Adriana R., Sachleen Singh, Andrés Márquez, Jorge Francés, Andrew Forbes, and Angela Dudley, "Nonlinear modal decomposition of structured light," Optics Express, Vol. 33, No. 19, 41261-41270, 2025.
doi:10.1364/oe.567825 Google Scholar
123. Moon, Jungho, Ye-Chan Cho, Sungsam Kang, Mooseok Jang, and Wonshik Choi, "Measuring the scattering tensor of a disordered nonlinear medium," Nature Physics, Vol. 19, No. 11, 1709-1718, 2023.
doi:10.1038/s41567-023-02163-8 Google Scholar
124. Sohmen, Maximilian, Maria Borozdova, Monika Ritsch-Marte, and Alexander Jesacher, "Complex-valued scatter compensation in nonlinear microscopy," Physical Review Applied, Vol. 22, No. 4, 044036, 2024.
doi:10.1103/physrevapplied.22.044036 Google Scholar
125. Buono, W. T., J. Santiago, L. J. Pereira, D. S. Tasca, K. Dechoum, and A. Z. Khoury, "Polarization-controlled orbital angular momentum switching in nonlinear wave mixing," Optics Letters, Vol. 43, No. 7, 1439-1442, 2018.
doi:10.1364/ol.43.001439 Google Scholar
126. Pereira, Leonardo J., Wagner T. Buono, Daniel S. Tasca, Kaled Dechoum, and Antonio Z. Khoury, "Orbital-angular-momentum mixing in type-II second-harmonic generation," Physical Review A, Vol. 96, No. 5, 053856, 2017.
doi:10.1103/physreva.96.053856 Google Scholar
127. Wu, Hai-Jun, Bo Zhao, Carmelo Rosales-Guzmán, Wei Gao, Bao-Sen Shi, and Zhi-Han Zhu, "Spatial-polarization-independent parametric up-conversion of vectorially structured light," Physical Review Applied, Vol. 13, No. 6, 064041, 2020.
doi:10.1103/PhysRevApplied.13.064041 Google Scholar
128. Pinheiro da Silva, B., G. Dos Santos, A. De Oliveira, N. Rubiano da Silva, W. Buono, R. Gomes, W. Soares, A. Jesus-Silva, E. Fonseca, P. Souto Ribeiro, et al. "Observation of a triangular-lattice pattern in nonlinear wave mixing with optical vortices," Optica, Vol. 9, No. 8, 908-912, 2022.
doi:10.1364/OPTICA.459812 Google Scholar
129. Wu, H.-J., B.-S. Yu, Z.-H. Zhu, W. Gao, D.-S. Ding, Z.-Y. Zhou, X.-P. Hu, C. Rosales-Guzmán, Y. Shen, and B.-S. Shi, "Conformal frequency conversion for arbitrary vectorial structured light," Optica, Vol. 9, No. 2, 187-196, 2022.
doi:10.1364/optica.444685 Google Scholar
130. Menshikov, Evgenii, Paolo Franceschini, Kristina Frizyuk, Ivan Fernandez-Corbaton, Andrea Tognazzi, Alfonso Carmelo Cino, Denis Garoli, Mihail Petrov, Domenico de Ceglia, and Costantino De Angelis, "Light structuring via nonlinear total angular momentum addition with flat optics," Light: Science & Applications, Vol. 14, No. 1, 381, 2025.
doi:10.1038/s41377-025-02004-8 Google Scholar
131. Zhang, Yong, Yan Sheng, Shining Zhu, Min Xiao, and Wieslaw Krolikowski, "Nonlinear photonic crystals: From 2D to 3D," Optica, Vol. 8, No. 3, 372-381, 2021.
doi:10.1364/optica.416619 Google Scholar
132. Chen, P., C. Wang, D. Wei, Y. Hu, X. Xu, J. Li, D. Wu, J. Ma, S. Ji, L. Zhang, et al. "Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal," Light: Science & Applications, Vol. 10, No. 1, 146, 2021.
doi:10.1038/s41377-021-00588-5 Google Scholar
133. Olarte, Omar E., Jacob Licea-Rodriguez, Jonathan A. Palero, Emilio J. Gualda, David Artigas, Jürgen Mayer, Jim Swoger, James Sharpe, Israel Rocha-Mendoza, Raul Rangel-Rojo, and Pablo Loza-Alvarez, "Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles," Biomedical Optics Express, Vol. 3, No. 7, 1492-1505, 2012.
doi:10.1364/boe.3.001492 Google Scholar
134. Vettenburg, Tom, Heather I. C. Dalgarno, Jonathan Nylk, Clara Coll-Lladó, David E. K. Ferrier, Tomáš Čižmár, Frank J. Gunn-Moore, and Kishan Dholakia, "Light-sheet microscopy using an Airy beam," Nature Methods, Vol. 11, No. 5, 541-544, 2014.
doi:10.1038/nmeth.2922 Google Scholar
135. Valle, Andres Flores and Johannes D. Seelig, "Two-photon Bessel beam tomography for fast volume imaging," Optics Express, Vol. 27, No. 9, 12147-12162, 2019.
doi:10.1364/oe.27.012147 Google Scholar
136. Chen, Xin, Suyi Zhong, Yiwei Hou, Ruijie Cao, Wenyi Wang, Dong Li, Qionghai Dai, Donghyun Kim, and Peng Xi, "Superresolution structured illumination microscopy reconstruction algorithms: A review," Light: Science & Applications, Vol. 12, No. 1, 172, 2023.
doi:10.1038/s41377-023-01204-4 Google Scholar
137. Zhang, Chenshuang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, and Junle Qu, "Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy," PhotoniX, Vol. 4, No. 1, 38, 2023.
doi:10.1186/s43074-023-00115-2 Google Scholar
138. Lee, Hongki, Hajun Yoo, Gwiyeong Moon, Kar-Ann Toh, Kentaro Mochizuki, Katsumasa Fujita, and Donghyun Kim, "Super-resolved Raman microscopy using random structured light illumination: Concept and feasibility," The Journal of Chemical Physics, Vol. 155, No. 14, 144202, 2021.
doi:10.1063/5.0064082 Google Scholar
139. Wang, Feifei, Yeteng Zhong, Oliver Bruns, Yongye Liang, and Hongjie Dai, "In vivo NIR-II fluorescence imaging for biology and medicine," Nature Photonics, Vol. 18, No. 6, 535-547, 2024.
doi:10.1038/s41566-024-01391-5 Google Scholar
140. Badrodien, Imraan, Pieter H. Neethling, and Gurthwin W. Bosman, "Improved image contrast in nonlinear light-sheet fluorescence microscopy using i2PIE Pulse compression," Scientific Reports, Vol. 14, No. 1, 12770, 2024.
doi:10.1038/s41598-024-63429-6 Google Scholar
141. Barsi, Christopher, Wenjie Wan, and Jason W. Fleischer, "Imaging through nonlinear media using digital holography," Nature Photonics, Vol. 3, No. 4, 211-215, 2009.
doi:10.1038/nphoton.2009.29 Google Scholar
142. Jia, Shu, Joyce Lee, Jason W. Fleischer, Georgios A. Siviloglou, and Demetrios N. Christodoulides, "Diffusion-trapped Airy beams in photorefractive media," Physical Review Letters, Vol. 104, No. 25, 253904, 2010.
doi:10.1103/physrevlett.104.253904 Google Scholar
143. Cao, Jianjun, Dongyi Shen, Yaming Feng, and Wenjie Wan, "Nonlinear negative refraction by difference frequency generation," Applied Physics Letters, Vol. 108, No. 19, 191101, 2016.
doi:10.1063/1.4948974 Google Scholar
144. Xu, Xiaoyi, Pengcheng Chen, Taxue Ma, Jianan Ma, Chao Zhou, Yawen Su, Mingxin Lv, Weiwen Fan, Bohan Zhai, Yuyang Sun, et al. "Large field-of-view nonlinear holography in lithium niobate," Nano Letters, Vol. 24, No. 4, 1303-1308, 2024.
doi:10.1021/acs.nanolett.3c04286 Google Scholar
145. Shen, Feiyang, Weiwen Fan, Yong Zhang, Xianfeng Chen, and Yuping Chen, "3D orbital angular momentum nonlinear holography," Advanced Optical Materials, Vol. 13, No. 9, 2402836, 2025.
doi:10.1002/adom.202402836 Google Scholar
146. Chen, Yi-Zhe, Ding Yan, Tong Qi, Xiang-Wei Wang, and Wei Gao, "Observation of spatial differentiation in structured nonlinear optics," Laser & Photonics Reviews, Vol. 19, No. 20, e00595, 2025.
doi:10.1002/lpor.202500595 Google Scholar
147. Sun, Xuhui, Hao Wu, Bing Gao, Chenglong Wang, Yibing Ma, Xuhao Hong, Chao Zhang, Yiqiang Qin, and Yongyuan Zhu, "Observation of ferroelectric domain walls using nonlinear spiral interferometry," Applied Physics Letters, Vol. 125, No. 7, 071111, 2024.
doi:10.1063/5.0201387 Google Scholar
148. Wang, Cheng, Zhaoyi Li, Myoung-Hwan Kim, Xiao Xiong, Xi-Feng Ren, Guang-Can Guo, Nanfang Yu, and Marko Lončar, "Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides," Nature Communications, Vol. 8, No. 1, 2098, 2017.
doi:10.1038/s41467-017-02189-6 Google Scholar
149. Dutt, Avik, Aseema Mohanty, Alexander L. Gaeta, and Michal Lipson, "Nonlinear and quantum photonics using integrated optical materials," Nature Reviews Materials, Vol. 9, No. 5, 321-346, 2024.
doi:10.1038/s41578-024-00668-z Google Scholar
150. Gao, Jiannan, Maria Antonietta Vincenti, Jesse Frantz, Anthony Clabeau, Xingdu Qiao, Liang Feng, Michael Scalora, and Natalia M. Litchinitser, "Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces," Nature Communications, Vol. 12, No. 1, 5833, 2021.
doi:10.1038/s41467-021-26094-1 Google Scholar
151. Zheng, Ze, Daria Smirnova, Gabriel Sanderson, Ying Cuifeng, Demosthenes C. Koutsogeorgis, Lujun Huang, Zixi Liu, Rupert Oulton, Arman Yousefi, Andrey E. Miroshnichenko, et al. "Broadband infrared imaging governed by guided-mode resonance in dielectric metasurfaces," Light: Science & Applications, Vol. 13, No. 1, 249, 2024.
doi:10.1038/s41377-024-01535-w Google Scholar
152. Gao, J., H. Barati Sedeh, D. Tsvetkov, D. G. Pires, M. A. Vincenti, Y. Xu, I. Kravchenko, R. George, M. Scalora, L. Feng, et al. "Topology-imprinting in nonlinear metasurfaces," Science Advances, Vol. 11, No. 24, eadv5190, 2025.
doi:10.1126/sciadv.adv5190 Google Scholar
153. Vabishchevich, Polina and Yuri Kivshar, "Nonlinear photonics with metasurfaces," Photonics Research, Vol. 11, No. 2, B50-B64, 2023.
doi:10.1364/prj.474387 Google Scholar
154. Yesharim, O., S. Izhak, and A. Arie, "Pseudo-spin light circuits in nonlinear photonic crystals," Nature Communications, Vol. 16, No. 1, 6508, 2025.
doi:10.1038/s41467-025-61918-4 Google Scholar
155. Autere, Anton, Henri Jussila, Yunyun Dai, Yadong Wang, Harri Lipsanen, and Zhipei Sun, "Nonlinear optics with 2D layered materials," Advanced Materials, Vol. 30, No. 24, 1705963, 2018.
doi:10.1002/adma.201705963 Google Scholar
156. Norden, T., L. M. Martinez, N. Tarefder, K. W. Kwock, L. M. McClintock, N. Olsen, L. N. Holtzman, J. H. Yeo, L. Zhao, X. Zhu, et al. "Twisted nonlinear optics in monolayer van der Waals crystals," ACS Nano, Vol. 19, No. 34, 30919-30929, 2025.
doi:10.1021/acsnano.5c06908 Google Scholar
157. Dang, Junhui, Dajiang Mei, and Yuandong Wu, "Review of growth method for typical nonlinear optical crystal," Journal of Synthetic Crystals, Vol. 49, No. 7, 1308, 2020. Google Scholar
158. Borghi, M., C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, "Nonlinear silicon photonics," Journal of Optics, Vol. 19, No. 9, 093002, 2017.
doi:10.1088/2040-8986/aa7a6d Google Scholar
159. Shen, D., J. Cao, and W. Wan, "Wavefront shaping with nonlinear four-wave mixing," Scientific Reports, Vol. 13, No. 1, 2750, 2023.
doi:10.1038/s41598-023-29621-w Google Scholar
160. Keren-Zur, Shay, Lior Michaeli, Haim Suchowski, and Tal Ellenbogen, "Shaping light with nonlinear metasurfaces," Advances in Optics and Photonics, Vol. 10, No. 1, 309-353, 2018.
doi:10.1364/aop.10.000309 Google Scholar
161. Santiago-Cruz, T., S. D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno, I. Brener, and M. V. Chekhova, "Resonant metasurfaces for generating complex quantum states," Science, Vol. 377, No. 6609, 991-995, 2022.
doi:10.1126/science.abq8684 Google Scholar
162. Dekkers, Kiki, Mwezi Koni, Vagharshak Hakobyan, Sachleen Singh, Jonathan Leach, Etienne Brasselet, Isaac Nape, and Andrew Forbes, "Wavelength-adaptive spin-orbit orbital angular momentum management in three-wave mixing," Journal of Optics, Vol. 27, No. 11, 115501, 2025.
doi:10.1088/2040-8986/ae184b Google Scholar
163. Bashan, Gil, Avishay Eyal, Moshe Tur, and Ady Arie, "Optically programable quasi phase matching in four-wave mixing," Nature Communications, Vol. 16, No. 1, 6855, 2025.
doi:10.1038/s41467-025-62025-0 Google Scholar
164. Vasilets, V. N., A. V. Kuznetsov, and V. I. Sevastianov, "Vacuum ultraviolet treatment of polyethylene to change surface properties and characteristics of protein adsorption," Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 69, No. 3, 428-435, 2004.
doi:10.1002/jbm.a.30005 Google Scholar
165. Mao, Y., D. Zhao, S. Yan, H. Zhang, J. Li, K. Han, X. Xu, C. Guo, L. Yang, C. Zhang, et al. "A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy," Light: Science & Applications, Vol. 10, No. 1, 22, 2021.
doi:10.1038/s41377-021-00463-3 Google Scholar
166. Wang, J., Z. Wang, F. Liu, L. Cai, J.-b. Pan, Z. Li, S. Zhang, H.-Y. Chen, X. Zhang, and Y. Mo, "Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters," Analytical Chemistry, Vol. 90, No. 16, 10 009-10 015, 2018.
doi:10.1021/acs.analchem.8b02478 Google Scholar
167. Semmlinger, M., M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W.-Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, "Vacuum ultraviolet light-generating metasurface," Nano Letters, Vol. 18, No. 9, 5738-5743, 2018.
doi:10.1021/acs.nanolett.8b02346 Google Scholar
168. Tseng, M. L., M. Semmlinger, M. Zhang, C. Arndt, T.-T. Huang, J. Yang, H. Y. Kuo, V.-C. Su, M. K. Chen, C. H. Chu, et al. "Vacuum ultraviolet nonlinear metalens," Science Advances, Vol. 8, No. 16, eabn5644, 2022.
doi:10.1126/sciadv.abn5644 Google Scholar
169. Reintjes, J. and R. C. Eckardt, "Efficient harmonic generation from 532 to 266 nm in ADP and KD*P," Applied Physics Letters, Vol. 30, No. 2, 91-93, 1977.
doi:10.1063/1.89300 Google Scholar
170. Sakuma, Jun, Yuichi Asakawa, and Minoru Obara, "Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal," Optics Letters, Vol. 29, No. 1, 92-94, 2004.
doi:10.1364/ol.29.000092 Google Scholar
171. Zhang, Jin-Wei, Hai-Nian Han, Lei Hou, Long Zhang, Zi-Jiao Yu, De-Hua Li, and Zhi-Yi Wei, "Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity," Chinese Physics B, Vol. 25, No. 1, 014205, 2016.
doi:10.1088/1674-1056/25/1/014205 Google Scholar
172. Ghorui, Chandan, A. M. Rudra, Udit Chatterjee, A. K. Chaudhary, and D. Ganesh, "Efficient second-harmonic and terahertz generation from single BiB3O6 crystal using nanosecond and femtosecond lasers," Applied Optics, Vol. 60, No. 19, 5643-5651, 2021.
doi:10.1364/AO.424241 Google Scholar
173. Kang, Lei, Huaguang Bao, and Douglas H. Werner, "Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces," Optics Letters, Vol. 46, No. 3, 633-636, 2021.
doi:10.1364/ol.413764 Google Scholar
174. Liu, Sheng, Michael B. Sinclair, Sina Saravi, Gordon A. Keeler, Yuanmu Yang, John Reno, Gregory M. Peake, Frank Setzpfandt, Isabelle Staude, Thomas Pertsch, and Igal Brener, "Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces," Nano Letters, Vol. 16, No. 9, 5426-5432, 2016.
doi:10.1021/acs.nanolett.6b01816 Google Scholar
175. Vabishchevich, Polina P., Sheng Liu, Michael B. Sinclair, Gordon A. Keeler, Gregory M. Peake, and Igal Brener, "Enhanced second-harmonic generation using broken symmetry III-V semiconductor Fano metasurfaces," ACS Photonics, Vol. 5, No. 5, 1685-1690, 2018.
doi:10.1021/acsphotonics.7b01478 Google Scholar
176. Li, Junhao, Guangwei Hu, Lina Shi, Nan He, Daqian Li, Qiuyu Shang, Qing Zhang, Huange Fu, Linlin Zhou, Wei Xiong, et al. "Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials," Nature Communications, Vol. 12, No. 1, 6425, 2021.
doi:10.1038/s41467-021-26818-3 Google Scholar
177. Brown, Andrew J. W., Mark S. Bowers, Ken W. Kangas, and Charles H. Fisher, "High-energy, high-efficiency second-harmonic generation of 1064-nm radiation in KTP," Optics Letters, Vol. 17, No. 2, 109-111, 1992.
doi:10.1364/ol.17.000109 Google Scholar
178. Kumar, S. Chaitanya, G. K. Samanta, Kavita Devi, and M. Ebrahim-Zadeh, "High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation," Optics Express, Vol. 19, No. 12, 11152-11169, 2011.
doi:10.1364/oe.19.011152 Google Scholar
179. Liu, Hua-Yu, Zi-Han Zhou, Qi Bian, Yong Bo, Yang Kou, Lei Yuan, Da-Fu Cui, and Qin-Jun Peng, "High-efficiency nanosecond green laser based on extra-cavity second-harmonic generation of a Nd:YAG MOPA system," IEEE Photonics Journal, Vol. 15, No. 5, 1-5, 2023.
doi:10.1109/jphot.2023.3309390 Google Scholar
180. Gwo, Shangjr, Chun-Yuan Wang, Hung-Ying Chen, Meng-Hsien Lin, Liuyang Sun, Xiaoqin Li, Wei-Liang Chen, Yu-Ming Chang, and Hyeyoung Ahn, "Plasmonic metasurfaces for nonlinear optics and quantitative SERS," ACS Photonics, Vol. 3, No. 8, 1371-1384, 2016.
doi:10.1021/acsphotonics.6b00104 Google Scholar
181. Suntsov, Sergiy, Christian E. Rüter, Dominik Brüske, and Detlef Kip, "Watt-level 775 nm SHG with 70% conversion efficiency and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides," Optics Express, Vol. 29, No. 8, 11386-11393, 2021.
doi:10.1364/oe.416723 Google Scholar
182. Gili, V. F., L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. de Angelis, and G. Leo, "Monolithic AlGaAs second-harmonic nanoantennas," Optics Express, Vol. 24, No. 14, 15965-15971, 2016.
doi:10.1364/oe.24.015965 Google Scholar
183. Fedotova, Anna, Mohammadreza Younesi, Jürgen Sautter, Aleksandr Vaskin, Franz J. F. Löchner, Michael Steinert, Reinhard Geiss, Thomas Pertsch, Isabelle Staude, and Frank Setzpfandt, "Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate," Nano Letters, Vol. 20, No. 12, 8608-8614, 2020.
doi:10.1021/acs.nanolett.0c03290 Google Scholar
184. Yuan, Shuai, Yunkun Wu, Zhongzhou Dang, Cheng Zeng, Xiaozhuo Qi, Guangcan Guo, Xifeng Ren, and Jinsong Xia, "Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity," Physical Review Letters, Vol. 127, No. 15, 153901, 2021.
doi:10.1103/physrevlett.127.153901 Google Scholar
185. Tu, Xu, Siqi Feng, Jiajun Li, Yangguang Xing, Feng Wu, Tingting Liu, and Shuyuan Xiao, "Enhanced second-harmonic generation in high-Q all-dielectric metasurfaces with backward frequency conversion," Physical Review A, Vol. 109, No. 6, 063522, 2024.
doi:10.1103/PhysRevA.109.063522 Google Scholar
186. Hu, B., X. Yang, J. Wu, S. Lu, H. Yang, Z. Long, L. He, X. Luo, K. Tian, W. Wang, et al. "Highly efficient octave-spanning long-wavelength infrared generation with a 74% quantum efficiency in a χ(2) waveguide," Nature Communications, Vol. 14, No. 1, 7125, 2023.
doi:10.1038/s41467-023-42912-0 Google Scholar