Department of Electrical and Electronic Engineering, Photonic Research Institute (PRI), Research Institute of Smart Energy (RISE), Research Institute for Advanced Manufacturing (RIAM)
The Hong Kong Polytechnic University
China
HomepageFaculty of Materials Science and Energy Engineering
Shenzhen University of Advanced Technology
China
HomepageDepartment of Electrical and Electronic Engineering, Photonic Research Institute (PRI), Research Institute of Smart Energy (RISE
The Hong Kong Polytechnic University
China
HomepageFaculty of Materials Science and Energy Engineering
Shenzhen University of Advanced Technology
China
HomepageDepartment of Electronic and Information Engineering
Hong Kong Polytechnic University
China
HomepageDepartment of Electronic and Information Engineering
Hong Kong Polytechnic University
China
Homepage1. Wang, Wei, Moses O. Tade, and Zongping Shao, "Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment," Chemical Society Reviews, Vol. 44, No. 15, 5371-5408, 2015.
doi:10.1039/c5cs00113g Google Scholar
2. Tao, Jiahua, Chunhu Zhao, Zhaojin Wang, You Chen, Lele Zang, Guang Yang, Yang Bai, and Junhao Chu, "Suppressing non-radiative recombination for efficient and stable perovskite solar cells," Energy & Environmental Science, Vol. 18, No. 2, 509-544, 2025.
doi:10.1039/d4ee02917h Google Scholar
3. Wang, Zhaojin, Xiao Duan, Jing Zhang, Wenbin Yuan, Dinghao Qu, You Chen, Lijuan He, Haoran Wang, Guang Yang, Wei Zhang, Yang Bai, and Hui-Ming Cheng, "Manipulating the crystallization kinetics of halide perovskites for large-area solar modules," Communications Materials, Vol. 5, No. 1, 131, 2024.
doi:10.1038/s43246-024-00566-5 Google Scholar
4. Yang, Shida, Weifei Fu, Zhongqiang Zhang, Hongzheng Chen, and Chang-Zhi Li, "Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite," Journal of Materials Chemistry A, Vol. 5, No. 23, 11462-11482, 2017.
doi:10.1039/c7ta00366h Google Scholar
5. Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, Vol. 131, No. 17, 6050-6051, 2009.
doi:10.1021/ja809598r Google Scholar
6. Li, Yuheng, Ziwei Zheng, Xin Zheng, Xiaoyuan Liu, Yingguo Yang, Yongcheng Zhu, Zaiwei Wang, Xingyu Ren, Mimi Fu, Rui Guo, et al., "Mutual stabilization of hybrid and inorganic perovskites for photovoltaics," eScience, 100449, 2025.
doi:10.1016/j.esci.2025.100449 Google Scholar
7. Green, Martin A., Ewan D. Dunlop, Masahiro Yoshita, Nikos Kopidakis, Karsten Bothe, Gerald Siefer, Xiaojing Hao, and Jessica Yajie Jiang, "Solar cell efficiency tables (Version 66)," Progress in Photovoltaics, Vol. 33, No. 7, 795-810, 2025.
doi:10.1002/pip.3919 Google Scholar
8. Shi, Yating, Joseph J. Berry, and Fei Zhang, "Perovskite/silicon tandem solar cells: Insights and outlooks," ACS Energy Letters, Vol. 9, No. 3, 1305-1330, 2024.
doi:10.1021/acsenergylett.4c00172 Google Scholar
9. Cheng, Yuanhang, Franky So, and Sai-Wing Tsang, "Progress in air-processed perovskite solar cells: From crystallization to photovoltaic performance," Materials Horizons, Vol. 6, No. 8, 1611-1624, 2019.
doi:10.1039/c9mh00325h Google Scholar
10. Wang, Jiarong, Ligang Yuan, Huiming Luo, Chenghao Duan, Biao Zhou, Qiaoyun Wen, and Keyou Yan, "Ambient air processed highly oriented perovskite solar cells with efficiency exceeding 23% via amorphous intermediate," Chemical Engineering Journal, Vol. 446, 136968, 2022.
doi:10.1016/j.cej.2022.136968 Google Scholar
11. Rong, Yaoguang, Yue Ming, Wenxian Ji, Da Li, Anyi Mei, Yue Hu, and Hongwei Han, "Toward industrial-scale production of perovskite solar cells: Screen printing, slot-die coating, and emerging techniques," The Journal of Physical Chemistry Letters, Vol. 9, No. 10, 2707-2713, 2018.
doi:10.1021/acs.jpclett.8b00912 Google Scholar
12. Zou, Yu, Wenjin Yu, Bo Qu, Zhijian Chen, Mingyang Wei, and Lixin Xiao, "Ambient fabrication of perovskites for photovoltaics," Nature Reviews Materials, Vol. 10, 400-402, 2025.
doi:10.1038/s41578-025-00813-2 Google Scholar
13. Zhang, Fei and Kai Zhu, "Additive engineering for efficient and stable perovskite solar cells," Advanced Energy Materials, Vol. 10, No. 13, 1902579, 2020.
doi:10.1002/aenm.201902579 Google Scholar
14. Shi, Xiaoyu, Tianxiao Liu, Yunjie Dou, Xiaodong Hu, Yangyang Liu, Feifei Wang, Lingyuan Wang, Zhijun Ren, and Shangshang Chen, "Air-processed perovskite solar cells with >25% efficiency and high stability enabled by crystallization modulation and holistic passivation," Advanced Materials, Vol. 36, No. 31, 2402785, 2024.
doi:10.1002/adma.202402785 Google Scholar
15. Wang, Min, Haoxuan Sun, Linxing Meng, Meng Wang, and Liang Li, "A universal strategy of intermolecular exchange to stabilize α-FAPbI3 and manage crystal orientation for high-performance humid-air-processed perovskite solar cells," Advanced Materials, Vol. 34, No. 23, 2200041, 2022.
doi:10.1002/adma.202200041 Google Scholar
16. Ning, Lei, Lixin Song, Zhengzheng Yao, Wei-Hsiang Chen, Pingfan Du, Pei-Cheng Jiang, and Jie Xiong, "Intercepting the chelation of perovskites with ambient moisture through active addition reaction for full-air-processed perovskite solar cells," Advanced Energy Materials, Vol. 14, No. 36, 2401320, 2024.
doi:10.1002/aenm.202401320 Google Scholar
17. Satale, Vinayak Vitthal, Sagnik Chowdhury, Asmaa Mohamed, Do-Hyung Kim, Sinyoung Cho, Jong-Soo Lee, and Jae-Wook Kang, "Green solvent enabled perovskite ink for ambient-air-processed efficient inkjet-printed perovskite solar cells," Advanced Functional Materials, Vol. 35, No. 40, 2503717, 2025.
doi:10.1002/adfm.202503717 Google Scholar
18. Mali, Sawanta S., Jyoti V. Patil, Julian A. Steele, Young Hee Jung, Mohammad Khaja Nazeeruddin, and Chang Kook Hong, "Controlled crystallization and surface engineering of mixed-halide γ-CsPbI2Br inorganic perovskites via guanidinium iodide additive in air-processed perovskite solar cells," Materials Today, Vol. 67, 33-45, 2023.
doi:10.1016/j.mattod.2023.05.006 Google Scholar
19. Li, Bo, Shuai Li, Jianqiu Gong, Xin Wu, Zhen Li, Danpeng Gao, Dan Zhao, Chunlei Zhang, Yan Wang, and Zonglong Zhu, "Fundamental understanding of stability for halide perovskite photovoltaics: The importance of interfaces," Chem, Vol. 10, No. 1, 35-47, 2024.
doi:10.1016/j.chempr.2023.09.002 Google Scholar
20. Wang, Shiqiang, Tinghuan Yang, Yingguo Yang, Yachao Du, Wenliang Huang, Liwei Cheng, Haojin Li, Peijun Wang, Yajie Wang, Yi Zhang, et al., "In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells," Advanced Materials, Vol. 35, No. 42, 2305314, 2023.
doi:10.1002/adma.202305314 Google Scholar
21. Shi, Pengju, Yong Ding, Bin Ding, Qiyu Xing, Tim Kodalle, Carolin M. Sutter-Fella, Ilhan Yavuz, Canglang Yao, Wei Fan, Jiazhe Xu, et al., "Oriented nucleation in formamidinium perovskite for photovoltaics," Nature, Vol. 620, No. 7973, 323-327, 2023.
doi:10.1038/s41586-023-06208-z Google Scholar
22. Feng, Ziyue, Mingrui He, Zhen Li, and Xiaojing Hao, "A perspective on spatiotemporal engineering of multidimensional heterointerfaces in perovskite solar cells," ACS Nano, Vol. 19, No. 31, 28003-28020, 2025.
doi:10.1021/acsnano.5c07973 Google Scholar
23. Gong, Xiu, Meng Li, Xiao-Bo Shi, Heng Ma, Zhao-Kui Wang, and Liang-Sheng Liao, "Controllable perovskite crystallization by water additive for high-performance solar cells," Advanced Functional Materials, Vol. 25, No. 42, 6671-6678, 2015.
doi:10.1002/adfm.201503559 Google Scholar
24. Zuo, Shouwei, Wenchao Niu, Shengqi Chu, Pengfei An, Huan Huang, Lirong Zheng, Lina Zhao, and Jing Zhang, "Water-regulated lead halide perovskites precursor solution: Perovskite structure making and breaking," The Journal of Physical Chemistry Letters, Vol. 14, No. 20, 4876-4885, 2023.
doi:10.1021/acs.jpclett.3c00683 Google Scholar
25. Leguy, Aurélien M. A., Yinghong Hu, Mariano Campoy-Quiles, M. Isabel Alonso, Oliver J. Weber, Pooya Azarhoosh, Mark Van Schilfgaarde, Mark T. Weller, Thomas Bein, Jenny Nelson, Pablo Docampo, and Piers R. F. Barnes, "Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells," Chemistry of Materials, Vol. 27, No. 9, 3397-3407, 2015.
doi:10.1021/acs.chemmater.5b00660 Google Scholar
26. Song, Zhaoning, Antonio Abate, Suneth C. Watthage, Geethika K. Liyanage, Adam B. Phillips, Ullrich Steiner, Michael Graetzel, and Michael J. Heben, "Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system," Advanced Energy Materials, Vol. 6, No. 19, 1600846, 2016.
doi:10.1002/aenm.201600846 Google Scholar
27. Yang, Shuang, Yun Wang, Porun Liu, Yi-Bing Cheng, Hui Jun Zhao, and Hua Gui Yang, "Functionalization of perovskite thin films with moisture-tolerant molecules," Nature Energy, Vol. 1, No. 2, 15016, 2016.
doi:10.1038/nenergy.2015.16 Google Scholar
28. Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat, "Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air," Journal of the American Chemical Society, Vol. 137, No. 4, 1530-1538, 2015.
doi:10.1021/ja511132a Google Scholar
29. Ahn, Namyoung, Kwisung Kwak, Min Seok Jang, Heetae Yoon, Byung Yang Lee, Jong-Kwon Lee, Peter V. Pikhitsa, Junseop Byun, and Mansoo Choi, "Trapped charge-driven degradation of perovskite solar cells," Nature Communications, Vol. 7, No. 1, 13422, 2016.
doi:10.1038/ncomms13422 Google Scholar
30. Dong, Xu, Xiang Fang, Minghang Lv, Bencai Lin, Shuai Zhang, Jianning Ding, and Ningyi Yuan, "Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition," Journal of Materials Chemistry A, Vol. 3, No. 10, 5360-5367, 2015.
doi:10.1039/C4TA06128D Google Scholar
31. Jing, Chen, Zhichao Lin, Yibing Wu, and Xinhua Ouyang, "Air-processed perovskite solar cells: Challenges, progress, and industrial strategies," Small, Vol. 21, No. 35, 2504448, 2025.
doi:10.1002/smll.202504448 Google Scholar
32. Liu, Jiewei, Sandeep K. Pathak, Nobuya Sakai, Rui Sheng, Sai Bai, Zhiping Wang, and Henry J. Snaith, "Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter," Advanced Materials Interfaces, Vol. 3, No. 22, 1600571, 2016.
doi:10.1002/admi.201600571 Google Scholar
33. Angmo, Dechan, Xiaojin Peng, Aaron Seeber, Chuantian Zuo, Mei Gao, Qicheng Hou, Jian Yuan, Qi Zhang, Yi-Bing Cheng, and Doojin Vak, "Controlling homogenous spherulitic crystallization for high-efficiency planar perovskite solar cells fabricated under ambient high-humidity conditions," Small, Vol. 15, No. 49, 1904422, 2019.
doi:10.1002/smll.201904422 Google Scholar
34. Yang, Bin, Ondrej Dyck, Jonathan Poplawsky, Jong Keum, Alexander Puretzky, Sanjib Das, Ilia Ivanov, Christopher Rouleau, Gerd Duscher, David Geohegan, and Kai Xiao, "Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions," Journal of the American Chemical Society, Vol. 137, No. 29, 9210-9213, 2015.
doi:10.1021/jacs.5b03144 Google Scholar
35. Shi, Jiangjian, Juan Dong, Songtao Lv, Yuzhuan Xu, Lifeng Zhu, Junyan Xiao, Xin Xu, Huijue Wu, Dongmei Li, Yanhong Luo, and Qingbo Meng, "Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property," Applied Physics Letters, Vol. 104, No. 6, 063901, 2014.
doi:10.1063/1.4864638 Google Scholar
36. Wu, Jian, Jing-Jing Dong, Si-Xuan Chen, Hui-Ying Hao, Jie Xing, and Hao Liu, "Fabrication of efficient organic-inorganic perovskite solar cells in ambient air," Nanoscale Research Letters, Vol. 13, No. 1, 293, 2018.
doi:10.1186/s11671-018-2714-z Google Scholar
37. Guo, Shuaishuai, Baojin Fan, Shengyi Yao, Li Rao, Shaohua Zhang, Xiaotian Hu, and Yiwang Chen, "The effect of interfacial humidity on the printing of highly reproducible perovskite solar cells in the air," Advanced Functional Materials, Vol. 34, No. 21, 2313715, 2024.
doi:10.1002/adfm.202313715 Google Scholar
38. Huang, Yihuai, Wenguang Zhang, Yuchen Xiong, Zijun Yi, Changkai Huang, Qinghui Jiang, Abdul Basit, Guibin Shen, Yubo Luo, Xin Li, and Junyou Yang, "Recent advancements in ambient-air fabrication of perovskite solar cells," Exploration, Vol. 5, No. 3, 20240121, 2025.
doi:10.1002/EXP.20240121 Google Scholar
39. Tress, W., N. Marinova, T. Moehl, S. M. Zakeeruddin, Mohammad Khaja Nazeeruddin, and M. Grätzela, "Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field," Energy & Environmental Science, Vol. 8, No. 3, 995-1004, 2015.
doi:10.1039/C4EE03664F Google Scholar
40. Eames, Christopher, Jarvist M. Frost, Piers R. F. Barnes, Brian C. O'regan, Aron Walsh, and M. Saiful Islam, "Ionic transport in hybrid lead iodide perovskite solar cells," Nature Communications, Vol. 6, No. 1, 7497, 2015.
doi:10.1038/ncomms8497 Google Scholar
41. Aristidou, Nicholas, Christopher Eames, Irene Sanchez-Molina, Xiangnan Bu, Jan Kosco, M. Saiful Islam, and Saif A. Haque, "Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells," Nature Communications, Vol. 8, No. 1, 15218, 2017.
doi:10.1038/ncomms15218 Google Scholar
42. Tsvetkov, Dmitry S., Maxim O. Mazurin, Vladimir V. Sereda, Ivan L. Ivanov, Dmitry A. Malyshkin, and Andrey Yu. Zuev, "Formation thermodynamics, stability, and decomposition pathways of CsPbX3 (X = Cl, Br, I) photovoltaic materials," The Journal of Physical Chemistry C, Vol. 124, No. 7, 4252-4260, 2020.
doi:10.1021/acs.jpcc.9b11494 Google Scholar
43. Scheidt, Rebecca A., Elisabeth Kerns, and Prashant V. Kamat, "Interfacial charge transfer between excited CsPbBr3 nanocrystals and TiO2: Charge injection versus photodegradation," The Journal of Physical Chemistry Letters, Vol. 9, No. 20, 5962-5969, 2018.
doi:10.1021/acs.jpclett.8b02690 Google Scholar
44. Zhang, Shasha, Shaohang Wu, B. Hari Babu, Weitao Chen, Rui Chen, Yuqian Huang, Zhichun Yang, Hongmei Zhu, Jing Zhou, and Wei Chen, "Adverse oxidation of CsPbI2Br perovskite during the crystallization process in an N2 glove-box," Journal of Materials Chemistry C, Vol. 7, No. 17, 5067-5073, 2019.
doi:10.1039/C9TC01209E Google Scholar
45. Brenes, Roberto, Dengyang Guo, Anna Osherov, Nakita K. Noel, Christopher Eames, Eline M. Hutter, Sandeep K. Pathak, Farnaz Niroui, Richard H. Friend, M. Saiful Islam, et al., "Metal halide perovskite polycrystalline films exhibiting properties of single crystals," Joule, Vol. 1, No. 1, 155-167, 2017.
doi:10.1016/j.joule.2017.08.006 Google Scholar
46. Ren, Zhiwei, Annie Ng, Qian Shen, Huseyin Cem Gokkaya, Jingchuan Wang, Lijun Yang, Wai-Kin Yiu, Gongxun Bai, Aleksandra B. Djurišić, Wallace Woon-Fong Leung, et al., "Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells," Scientific Reports, Vol. 4, No. 1, 6752, 2014.
doi:10.1038/srep06752 Google Scholar
47. Cheng, Yuanhang, Xiuwen Xu, Yuemin Xie, Ho-Wa Li, Jian Qing, Chunqing Ma, Chun-Sing Lee, Franky So, and Sai-Wing Tsang, "18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH," Solar RRL, Vol. 1, No. 9, 1700097, 2017.
doi:10.1002/solr.201700097 Google Scholar
48. Chen, Shangshang, Xun Xiao, Hangyu Gu, and Jinsong Huang, "Iodine reduction for reproducible and high-performance perovskite solar cells and modules," Science Advances, Vol. 7, No. 10, eabe8130, 2021.
doi:10.1126/sciadv.abe8130 Google Scholar
49. Meng, Hongguang, Kaitian Mao, Fengchun Cai, Kai Zhang, Shaojie Yuan, Tieqiang Li, Fangfang Cao, Zhenhuang Su, Zhengjie Zhu, Xingyu Feng, et al., "Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p-i-n perovskite solar cells," Nature Energy, Vol. 9, No. 5, 536-547, 2024.
doi:10.1038/s41560-024-01471-4 Google Scholar
50. Tian, Chuanming, Tianhao Wu, Xinliang Zhou, Yu Zhao, Bin Li, Xuefei Han, Kerui Li, Chengyi Hou, Yaogang Li, Hongzhi Wang, and Qinghong Zhang, "Air-processed efficient perovskite solar cells with full lifecycle management," Advanced Materials, Vol. 37, No. 1, 2411982, 2025.
doi:10.1002/adma.202411982 Google Scholar
51. Yang, Guang, Hangyu Gu, Jun Yin, Chengbin Fei, Zhifang Shi, Xiaoqiang Shi, Xingjian Ying, and Jinsong Huang, "Reductive cation for scalable wide-bandgap perovskite solar cells in ambient air," Nature Sustainability, 456-463, 2025.
doi:10.1038/s41893-025-01529-5 Google Scholar
52. Zhang, Jiyun, Jianchang Wu, Anastasia Barabash, Tian Du, Shudi Qiu, Vincent M. Le Corre, Yicheng Zhao, Kaicheng Zhang, Frederik Schmitt, Zijian Peng, et al., "Precise control of process parameters for >23% efficiency perovskite solar cells in ambient air using an automated device acceleration platform," Energy & Environmental Science, Vol. 17, No. 15, 5490-5499, 2024.
doi:10.1039/d4ee01432d Google Scholar
53. Moazzezi, Parinaz, Vishal Yeddu, I. Teng Cheong, Mohammad Reza Kokaba, Sergey Dayneko, Yameen Ahmed, and Makhsud I. Saidaminov, "Discovery of perovskite cosolvency and undoped FAPbI3 single-crystal solar cells fabricated in ambient air," Journal of the American Chemical Society, Vol. 147, No. 12, 10203-10211, 2025.
doi:10.1021/jacs.4c15716 Google Scholar
54. Zhang, Yao, Xiangyu Sun, Qingya Wang, Yansong Yue, Zhen Guan, Heng Liu, Ziying Li, Yihan Zhang, Mengfan Qiu, Dongni Li, et al., "Solvent environment engineering for reliable fabrication of perovskite solar cells in air with a wide humidity range," Advanced Energy Materials, Vol. 15, No. 27, 2500156, 2025.
doi:10.1002/aenm.202500156 Google Scholar
55. Ünlü, Feray, Alejandra Florez, Keely Dodd-Clements, Lennart Klaus Reb, Michael Götte, Matthias Grosch, Fengning Yang, Senol Öz, Florian Mathies, Sanjay Mathur, Daniel Ramírez, Franklin Jaramillo, and Eva Unger, "Toward green processing of perovskite solar cells: Protic ionic liquids enable water- and alcohol-based MAPbI3 precursors inks for slot-die coating," Advanced Energy Materials, Vol. 15, No. 16, 2403626, 2025.
doi:10.1002/aenm.202403626 Google Scholar
56. Hoang, Minh Tam, Yang Yang, Ngoc Duy Pham, and Hongxia Wang, "Ecofriendly solution processing of perovskite solar cells using water," The Journal of Physical Chemistry Letters, Vol. 15, No. 26, 6880-6889, 2024.
doi:10.1021/acs.jpclett.4c01389 Google Scholar
57. Zhai, Peng, Lixia Ren, Shuqin Li, Lu Zhang, Deng Li, and Shengzhong Frank Liu, "Light modulation strategy for highest-efficiency water-processed perovskite solar cells," Matter, Vol. 5, No. 12, 4450-4466, 2022.
doi:10.1016/j.matt.2022.09.002 Google Scholar
58. Lang, Lei, Zicheng Ding, Yachao Du, Nan Wu, Pengchi Liu, Ru Qin, Shuang Wang, Zhichao Wang, Yongchao Tu, Xiujie Liu, et al., "Ambient-printed methylammonium-free perovskite solar cells enabled by multiple molecular interactions," Advanced Energy Materials, Vol. 15, No. 21, 2405423, 2025.
doi:10.1002/aenm.202405423 Google Scholar
59. Zou, Yu, Wenjin Yu, Haoqing Guo, Qizhi Li, Xiangdong Li, Liang Li, Yueli Liu, Hantao Wang, Zhenyu Tang, Shuang Yang, et al., "A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air," Science, Vol. 385, No. 6705, 161-167, 2024.
doi:10.1126/science.adn9646 Google Scholar
60. Wu, Guoxin, Jiancun Wang, Xinzhuo Fang, Jiashuo Xu, Xinxin Xia, Jianwei Zhao, Liqiang Zheng, Maojie Zhang, Zhaolai Chen, Haibo Chen, Liang Wang, and William W. Yu, "Two-step inverted perovskite solar cells with >25% efficiency fabricated in ambient air," Advanced Energy Materials, Vol. 15, No. 27, 2500830, 2025.
doi:10.1002/aenm.202500830 Google Scholar
61. Liu, Xiaomin, Jiahao Zhang, Haifei Wang, Yanfeng Miao, Ting Guo, Luis K. Ono, Shuai Yuan, Yao Wang, Penghui Ji, Haoran Chen, et al., "CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis," Joule, Vol. 8, No. 10, 2851-2862, 2024.
doi:10.1016/j.joule.2024.06.026 Google Scholar
62. Xu, Ligang, Wei Qian, Yuhan Zhou, Zijie Wei, Hailong Wang, Wenzhen Lv, Jing Li, Wenchao Huang, Lin Yao, Runfeng Chen, and Wei Huang, "In situ cation exchange enables air-processed inverted perovskite solar cells with over 25% efficiency and enhanced stability," Angewandte Chemie, Vol. 137, No. 26, e202503702, 2025.
doi:10.1002/ange.202503702 Google Scholar
63. Lu, Menghan, Jike Ding, Quanxing Ma, Zuolin Zhang, Mengjia Li, Wenhuan Gao, Wenlong Mo, Boxue Zhang, Thierry Pauporté, Jiajia Zhang, et al., "Dual-site passivation by heterocycle functionalized amidinium cations toward high-performance inverted perovskite solar cells and modules," Energy & Environmental Science, Vol. 18, 5973-5984, 2025.
doi:10.1039/d5ee00524h Google Scholar
64. Chen, Xining, Fu Yang, Linhao Yuan, Shihao Huang, Hao Gu, Xiaoxiao Wu, Yunxiu Shen, Yujin Chen, Ning Li, Hans-Joachim Egelhaaf, et al., "Perfluoroalkylsulfonyl ammonium for humidity-resistant printing high-performance phase-pure FAPbI3 perovskite solar cells and modules," Joule, Vol. 8, No. 8, 2265-2282, 2024.
doi:10.1016/j.joule.2024.05.018 Google Scholar
65. Song, Yuting, Ziyan Liu, Xinhang Cai, Haoyu Ge, Xuelian Liu, Xianzhao Wang, Aijun Li, Tsutomu Miyasaka, Naoyuki Shibayama, and Xiao-Feng Wang, "Efficient and moisture resistant wide-bandgap perovskite solar cells with phosphinate-based iodine defect passivation," Advanced Energy Materials, Vol. 15, No. 30, 2500650, 2025.
doi:10.1002/aenm.202500650 Google Scholar
66. Ning, Lei, Zhengzheng Yao, Leying Zha, Lixin Song, Pingfan Du, Wei-Hsiang Chen, and Jie Xiong, "High-oriented SnO2 nanocrystals for air-processed flexible perovskite solar cells with an efficiency of 23.87%," Advanced Materials, Vol. 37, No. 27, 2418791, 2025.
doi:10.1002/adma.202418791 Google Scholar
67. Zhao, Yu, Yangyang Liu, Zhijun Ren, Yiran Li, Yaoyao Zhang, Fan-Cheng Kong, Tianxiao Liu, Xiaoyu Shi, Yunjie Dou, Lingyuan Wang, et al., "Enhanced interface adhesion with a polymeric hole transporter enabling high-performance air-processed perovskite solar cells," Energy & Environmental Science, Vol. 18, No. 3, 1366-1374, 2025.
doi:10.1039/d4ee04481a Google Scholar
68. Yang, Haichao, Zhiyuan Xu, Huaxin Wang, Saif M. H. Qaid, Omar F. Mohammed, and Zhigang Zang, "Iodide management and oriented crystallization modulation for high-performance all-air processed perovskite solar cells," Advanced Materials, Vol. 36, No. 49, 2411721, 2024.
doi:10.1002/adma.202411721 Google Scholar
69. Zhu, Xuejie, Dongqi Yu, Xin Zhou, Nan Wang, Hong Liu, Zihui Liang, Congcong Wu, Kai Wang, Dayong Jin, Shengzhong Liu, and Dong Yang, "Interfacial molecular anchor for ambient all-bladed perovskite solar modules," Joule, Vol. 9, No. 5, 101919, 2025.
doi:10.1016/j.joule.2025.101919 Google Scholar
70. Han, Xiao, Xinxing Liu, Yue Yu, Dongmei He, Jing Feng, Jianhong Yi, and Jiangzhao Chen, "Minimizing interfacial energy losses via fluorination strategy toward high-performance air-fabricated perovskite solar cells," Chemical Engineering Journal, Vol. 501, 157430, 2024.
doi:10.1016/j.cej.2024.157430 Google Scholar
71. Li, Hui, Jialong Duan, Chenlong Zhang, Naimin Liu, Linzheng Ma, Xingxing Duan, Jie Dou, Qiyao Guo, Benlin He, Yuanyuan Zhao, and Qunwei Tang, "Idealizing air-processed perovskite film competitive by surface lattice etching-reconstruction for high-efficiency solar cells," Angewandte Chemie, Vol. 137, No. 7, e202419061, 2025.
doi:10.1002/ange.202419061 Google Scholar
72. Mali, Sawanta S., Jyoti V. Patil, Julian A. Steele, Mohammad Khaja Nazeeruddin, Jin Hyeok Kim, and Chang Kook Hong, "All-inorganic halide perovskites for air-processed ``n-i-p'' monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency," Energy & Environmental Science, Vol. 17, No. 3, 1046-1060, 2024.
doi:10.1039/d3ee02763e Google Scholar
73. Hu, Xiaodong, Chaoyue Zhao, Yangyang Liu, Jian-An Li, Lingyuan Wang, Xinsheng Tang, Yunjie Dou, Xiaoyu Shi, Tianxiao Liu, Siwei Luo, and Shangshang Chen, "Blade-coated perovskite-organic tandem solar cells in ambient conditions," Advanced Functional Materials, e12093, 2025.
doi:10.1002/adfm.202512093 Google Scholar
74. Huang, Jianbing, Shunquan Tan, Peter D. Lund, and Huanping Zhou, "Impact of H2O on organic-inorganic hybrid perovskite solar cells," Energy & Environmental Science, Vol. 10, No. 11, 2284-2311, 2017.
doi:10.1039/c7ee01674c Google Scholar
75. Niu, Guangda, Wenzhe Li, Fanqi Meng, Liduo Wang, Haopeng Dong, and Yong Qiu, "Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells," Journal of Materials Chemistry A, Vol. 2, No. 3, 705-710, 2014.
doi:10.1039/C3TA13606J Google Scholar
76. Aristidou, Nicholas, Irene Sanchez-Molina, Thana Chotchuangchutchaval, Michael Brown, Luis Martinez, Thomas Rath, and Saif A. Haque, "The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers," Angewandte Chemie, Vol. 127, No. 28, 8326-8330, 2015.
doi:10.1002/ange.201503153 Google Scholar
77. Nazir, Ghazanfar, Seul-Yi Lee, Jong-Hoon Lee, Adeela Rehman, Jung-Kun Lee, Sang Il Seok, and Soo-Jin Park, "Stabilization of perovskite solar cells: Recent developments and future perspectives," Advanced Materials, Vol. 34, No. 50, 2204380, 2022.
doi:10.1002/adma.202204380 Google Scholar
78. Said, Ahmed A., Erkan Aydin, Esma Ugur, Zhaojian Xu, Caner Deger, Badri Vishal, Aleš Vlk, Pia Dally, Bumin K. Yildirim, Randi Azmi, et al., "Sublimed C60 for efficient and repeatable perovskite-based solar cells," Nature Communications, Vol. 15, No. 1, 708, 2024.
doi:10.1038/s41467-024-44974-0 Google Scholar
79. Li, Dongyang, Qing Lian, Tao Du, Ruijie Ma, Heng Liu, Qiong Liang, Yu Han, Guojun Mi, Ouwen Peng, Guihua Zhang, et al., "Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells," Nature Communications, Vol. 15, No. 1, 7605, 2024.
doi:10.1038/s41467-024-51760-5 Google Scholar
80. Asuo, Ivy M., Dawit Gedamu, Nutifafa Y. Doumon, Ibrahima Ka, Alain Pignolet, Sylvain G. Cloutier, and Riad Nechache, "Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells," Materials Advances, Vol. 1, No. 6, 1866-1876, 2020.
doi:10.1039/d0ma00528b Google Scholar
81. Lee, Hock Beng, Rishabh Sahani, Vasanthan Devaraj, Neetesh Kumar, Barkha Tyagi, Jin-Woo Oh, and Jae-Wook Kang, "Complex additive-assisted crystal growth and phase stabilization of α-FAPbI3 film for highly efficient, air-stable perovskite photovoltaics," Advanced Materials Interfaces, Vol. 10, No. 2, 2201658, 2023.
doi:10.1002/admi.202201658 Google Scholar
82. Wang, Junxiao, Guangwei Wang, and Bing Chen, "A review of recent progress on enhancing stability of CsPbX3 perovskite solar cells," Sustainable Energy & Fuels, Vol. 8, 4667-4686, 2024.
doi:10.1039/D4SE00914B Google Scholar
83. Zheng, Xuntian, Wenchi Kong, Jin Wen, Jiajia Hong, Haowen Luo, Rui Xia, Zilong Huang, Xin Luo, Zhou Liu, Hongjiang Li, et al., "Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air," Nature Communications, Vol. 15, No. 1, 4907, 2024.
doi:10.1038/s41467-024-49351-5 Google Scholar
84. Aihemaiti, Nuerbiya, Yifan Jiang, Yizhou Zhu, and Siying Peng, "Light-induced phase segregation evolution of all-inorganic mixed halide perovskites," The Journal of Physical Chemistry Letters, Vol. 14, No. 1, 267-272, 2023.
doi:10.1021/acs.jpclett.2c03419 Google Scholar
85. Zhang, Xuliang, Hehe Huang, Chenyu Zhao, and Jianyu Yuan, "Surface chemistry-engineered perovskite quantum dot photovoltaics," Chemical Society Reviews, Vol. 54, No. 6, 3017-3060, 2025.
doi:10.1039/d4cs01107d Google Scholar
86. Chen, Changshun, Jianxin Chen, Huchen Han, Lingfeng Chao, Jianfei Hu, Tingting Niu, He Dong, Songwang Yang, Yingdong Xia, Yonghua Chen, and Wei Huang, "Perovskite solar cells based on screen-printed thin films," Nature, Vol. 612, No. 7939, 266-271, 2022.
doi:10.1038/s41586-022-05346-0 Google Scholar
87. Bu, Tongle, Jing Li, Hengyi Li, Congcong Tian, Jie Su, Guoqing Tong, Luis K. Ono, Chao Wang, Zhipeng Lin, Nianyao Chai, et al., "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules," Science, Vol. 372, No. 6548, 1327-1332, 2021.
doi:10.1126/science.abh1035 Google Scholar