1. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
doi:504 Gateway Time-out
2. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
doi:The server didn't respond in time.
3. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, New York, 1964; (Reprinted) Hemisphere, 1985.
doi:
4. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.
5. Bettess, P., "Infinite elements," Int. J. Num. Meth. Eng., Vol. 11, 53-64, 1977. Google Scholar
6. Mei, K. K., M. A. Morgan, and S. K. Chang, "Finite methods in electromagnetic scattering," Electromagnetic Scattering, Chap. 10, P. L. E. Ushlenghi, Ed., Academic Press, New York, 1978. Google Scholar
7. Greenberg, M. D., Foundations of Applied Mathematics, 540-547, Prentice-Hall, 1978.
8. Stakgold, I., Green's Functions and Boundary Value Problems, Chap. 8, Wiley, 1979.
9. Courant, R., K. Friedrichs, and H. Lewy, "Uber die partiellen differenzengleichungen der mathematischen physik," Mathematische Annalen, Vol. 100, 32-74, 1928. Google Scholar
10. Fox, P., "The solution of hyperbolic partial differentid equations by difference methods," Mathematical Methods for Digital Computers, Chap. 16, A. Ralston and H. S. Wolf, Eds., Wiley, New York, 1964. Google Scholar
11. Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differen tial Equations in Science and Engineering, Wiley, 1982.
12. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966. Google Scholar
13. Strang, G. and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973.
14. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.
15. Tewarson, R. P., Sparse Matrices, Academic, 1973.
16. Morgan, M. A. and K. K. Mei, "Finite element computation of scattering by inhomogeneous penetrable bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 27, 202-214, 1979. Google Scholar
17. Mittra, R. and C. A. Klein, "Stability and convergence of moment method solutions," Numerical and Asymptotic Techniques in Electromagnetics, Chap. 5, R. Mittra, Ed., Springer-Verlag, New York, 1975. Google Scholar
18. Isaacson, E. and H. B. Keller, Analysis of Numerical Methods, Wiley, 1966.
19. Rynne, B. P., "Instabilities in time marching methods for scattering problems," Electromagnetics, Vol. 6, 129-144, 1986. Google Scholar
20. Mei, K. K., "Unirhoment method of solving antenna and scattering problems," IEEE Trans. Antennas Propagat., Vol. 22, 760-766, 1974. Google Scholar
21. Chang, S. K. and K. K. Mei, "Application of the unimoment method to electromagnetic scattering of dielectric cylinders," IEEE Trans. Antennas Propagat., Vol. 24, 35-42, 1976. Google Scholar
22. Stovall, R. E. and K. K. Mei, "Application of a unimoment technique to a biconical antenna with inhomogeneous dielectric loading," IEEE Trans. Antennas Propagat., Vol. 23, 335-341, 1975. Google Scholar
23. Morgan, M. A., "Finite element computation of microwave scattering by raindrops," Radio Science, Vol. 15, 1109-1119, 1980. Google Scholar
24. Morgan, M. A., "Finite element calculation of microwave absorption by the cranial structure," IEEE Trans. Biomed. Eng., Vol. 28, 687-695, 1981. Google Scholar
25. Hunka, J. F. and K. K. Mei, "Electromagnetic scattering by two bodies of revolution," Electromagnetics, Vol. 1, No. 3, 329-347, 1981. Google Scholar
26. Chang, S. K. and K. K. Mei, "Multipole expansion technique for electromagnetic scattering by buried objects," Electromagnetics, Vol. 1, No. 1, 73-89, 1981. Google Scholar
27. Morgan, M. A., K. K. Mei, and S. K. Chang, "Coupled azimuthal potentials for electromagnetic field problems in inhomogeneous axially-symmetric media," IEEE Trans. Antennas Propagat., Vol. 25, 413-417, 1977. Google Scholar
28. Morgan, M. A., H. Chen, S. C. Hill, and P. W. Barber, "Finite element-boundary integral formulation for electromagnetic scattering," J. Wave Motion, Vol. 6, 91-103, 1984. Google Scholar
29. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Efectromagnetics, R. Mittra, Ed., Pergamon Press, New York, 1973. Google Scholar
30. Waterman, P. C., "Scattering by dielectric obstacles," Alta Frequenza, Vol. 38, (Speciale), 348-352, 1969. Google Scholar
31. Miller, R. F., "Rayleigh hypothesis in scattering problems," Electronics Letters, Vol. 5, No. 17, 416-418, 1969. Google Scholar
32. Peterson, A. F., "A comparison of integral, differential and hybrid methods for TE-wave scattering from inhomogeneous dielectric cylinders," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 2, 87-106, 1989. Google Scholar
33. Morgan, M. A. and B. E. Welch, "The field feedback formulation for electromagnetic scattering problems," IEEE Trans. Antennas Propgat., Vol. 34, 1377-1382, Dec. 1986. Google Scholar
34. Morgan, M. A., "Stability considerations in the field feedback formulation," IEEE Trans. Antennas Propagat., March 1989. Google Scholar
35. Welch, T. B., "Electromagnetic Scattering from Two-Dimensionaf Objects Using the Field Feedback Formulation,", Engineer's Thesis, E.C.E. Dept., Naval Postgraduate School, Monterey, CA, March 1989. Google Scholar
36. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. 13, 334-341, 1965. Google Scholar
37. Richmond, J. B., "TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propagat., Vol. 14, 460-464, 1966. Google Scholar
38. Mabaya, N., P. E. Lagasse, and P. Vandenbulcke, "Finite element analysis of optical waveguides," IEEE Trans. Microwave Theory Tech., Vol. 29, 600-605, 1981. Google Scholar
39. Sommerfeld, A., Partial Differential Equations in Physics, Academic, 1949.
40. Merewether, D. E., "Transient currents induced on a metallic body of revolution by an electromagnetic pulse," IEEE Trans. Electromagn. Compat., Vol. 13, 41-44, 1971. Google Scholar
41. Kriegsmann, G. A. and C. S. Morawetz, "Numerical solutions of exterior problems with the reduced wave equation," J. Comp. Phys., Vol. 28, 181-197, 1978. Google Scholar
42. Bayliss, A. and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math., Vol. 23, 707-725, 1980. Google Scholar
43. Kriegsmann, G. A. and C. S. Morawetz, "Solving the Helmholtz equation for exterior problems with variable index of refraction: I," SIAM J. Sci. Stat. Comput., Vol. 1, 371-385, 1980. Google Scholar
44. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comp., Vol. 31, 629-651, 1977. Google Scholar
45. Kriegsmann, G. A., A. Taflove, and K. R. Umashankar, "A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition," IEEE Trans. Antennas Pnopagat., Vol. 35, 153-161, 1987. Google Scholar
46. Wilcox, C. H., "An expansion theorem for electromagnetic fields," Commun. Pure Appl. Math., Vol. 9, 115-132, 1956. Google Scholar
47. Taflove, A. and K. R. Umashankar, "The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems," Journal of Electromagnetic Waves and Applications, Vol. 1, 243-267, 1987. Google Scholar
48. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of time-domain electromagnetic field equations," IEEE Trans. Electromag. Compat., Vol. 23, 377-382, 1981. Google Scholar
49. Moore, T. G., J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, "Theory and application of radiation boundary operators," IEEE Trans. Antennas Pmpagat., Vol. 36, 1797-1812, 1988. Google Scholar