1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 1, 2 3rd ed. 1891, Dover Publication Inc., 1954.
2. Van Beek, L. K. H., "Dielectric behavior of heterogeneous systems," Progress in Dielectrics, Vol. 7, 69-114, Heywood and Company Ltd., London, 1967.
3. Tinga, W. R., "Multiphase Dielectric Theory-Applied to Cellulose Mixtures,", Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada, 1969.
4. Tinga, W. R., W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. of Appl. Phys., Vol. 44, No. 9, 3897-3902, 1973.
5. Sihvola, A., "Analysis of Microwave Structures and Mixing Formulae with Application to Remote Sensing Measurements,", Ph.D. Thesis, Helsinki University of Technology, 1986.
6. Sihvola, A. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. GE, Vol. 26, No. 4, 420-429, 1988.
7. De Loor, G. P., "Dielectric Properties of Heterogeneous Mixtures,", Ph.D. Thesis, Leiden, The Netherlands, 1956.
8. Kraszewski, A., "Prediction of the dielectric properties of two-phase mixtures," J. Microwave Power, Vol. 12, 215-222, 1977.
9. Sihvola, A., , see elsewhere in this book.
10. Varadan, V. K., Y. Ma, A. Lahktakia, and V. V. Varadan, "Microwave sintering of ceramics," Mat. Res. Soc. Symp. Proc., Vol. 124, 45-57, 1988.
11. Böttcher, C. J. F., Theory of Electric PoIarisation, Elsevier Publishing Co., New York, 1952.
12. Yaghjian, A. D., "Electric dyadic Green's Functions in the source region," Proc. IEEE, Vol. 68, No. 2, 248-263, 1980.
13. Lord Rayleigh "On the influence of obstacles arranged in rectangular order upon the properties of a medium," Philosophical Magazine, Vol. 32, 481-502, 1892.
14. Cohen, R. W., G. D. Cody, M. D. Coutts, and B. Abele, "Optical properties of granular silver and gold films," Phys. Rev. B, Vol. 8, No. 8, 3689-3701, 1973.
15. Wiener, O., Abh. Math. Phys. Kl. Sachs Akad. Wiss., Leipzig, 32, 509, 1912.
16. Bruggeman, D. A. G., "Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen," Annalen der Physik, Vol. 24, 636-644, 1935.
17. Niesel, W., Ann. Phys., (Leipz.) 10, 336, 1952.
18. Looyenga, H., "Dielectric constants of mixtures," Physica, Vol. 321, 401-406, 1965.
19. Wait, J. R., Electromagnetic Wave Theory, Harper and Row, Ch. 2, 54-75, 1985.
20. Stroud, D., "Generalized effective-medium approach to the conductivity of an inhomogeneous material," Phys. Rev. B, Vol. 12, No. 8, 3368-3373, 1975.
21. Brown, W. F., Jr., "Solid mixture permittivities," J. of Chemical Physics, Vol. 23, No. 8, 1514-1517, 1955.
2. Nelson, S. O., "Method for determining dielectric properties of solids from measurements on pulverized materials," 1987 IEEE MTT-S Int. Microwave Symp. Digest, Vol. 1, 461-463, 1987.
23. Nelson, S. O., , see chapter in this book.
24. Lewin, L., "The electrical constants of a material loaded with spherical particles," Proc. IEE, Vol. 94, Part 3, 65-68, 1947.
25. Lichtenecker, K., Kolloid-Beih., Vol. 23, 285, 1926.
26. Onsager, L., J., Amer. Chem. Soc., Vol. 58, 1486, 1936.
27. Polder, D. and J. H. van Santen, "The effective permeability of mixtures and solids," Physica XII, Vol. 5, 257-271, 1946.
28. Taylor, L. S., "Dielectrics loaded with anisotropic materials," IEEE Trans. AP, Vol. 14, 669-670, 1966.
29. Korneenko, I. A., "Mean values of the parameters in inhomogeneous media," Soviet Physics --- Technical Physics, Vol. 5, 40, 1960.
30. Frandck, V., "On the penetration of a static homogeneous field in an anisotropic medium into an ellipsoidal inclusion consisting of another anisotropic medium," Symp. on Electromagnetic Theory and Antennas, 615-623, Oxford Pergamon, London, 1962.
31. Kirkwood, J. G., "On the theory of dielectric polarization," J. of Chemical Physics, Vol. 4, 592-601, 1936.
32. Tsang, L. and J. A. Kong, "Scattering of electromagnetic waves from random media with strong permittivity fluctuations," Radio Science, Vol. 16, No. 3, 303-320, 1981.
33. Sheng, P., Phys. Rev. Lett., Vol. 45, 60, 1980.
34. Collin, R. E., Foundations of Microwave Engineering, McGraw Hill, 1966.
35. Thiebaut, J. M., J. F. Rochas, M. Manoury, and G. Roussy, "Control of the fields and hysteresis heating process in a microwave resonant applicator," J. of Microwave Power, Vol. 17, No. 3, 187-194, 1982.
36. The Essentials of Heat Transfer I, Research and Education Association, New York, 1987.
37. Meek, T. T., "Proposed model for the sintering of a dielectric in a microwave field," J. Mat. Science Letters, No. 6, 638-640, 1987.
38. Meek, T. T., "Ceramic-Ceramic seals by microwave heating," J. Mat. Science Letters, No. 5, 270-274, 1986.
39. Palaith, D., R. Silberglitt, C. C. M. Wu, R. Kleiner, and E. L. Libelo, "Microwave joining of ceramics," Mat. Res. Soc. Symp. Proc., No. 24, 255-266, 1988.
40. Watters, D. G., M. E. Brodwin, and G. A. Kriegsman, "Dynamic temperature profiles for a uniformly illuminated planar surface," Mat. Res. Soc. Symp. Proc., No. 24, 129-134, 1988.
41. Bosman, A. J. and E. E. Havinga, "Temperature dependence of Dielectric constants of cubic ionic compounds," Physical Review, Vol. 129, No. 4, 1593-1600, 1963.
42. Ho, W. W., "High-temperature dielectric properties of polycrystallhe ceramics," Materials Research Society, 1988 Symp. Proc. Microwave Pmessing of Materials, Vol. 124, 137-148, 1988.
43. Tinga, W. R., "Microwave dielectric constants of metal oxides at high temperatures: Part I," Electromagnetic Energy Reviews, Vol. 1, No. 5, 1-6, 1988.
44. Tinga, W. R., "Microwave dielectric constants of metal oxides at high temperatures: Part II," Electromagnetic Energy Reviews, Vol. 2, No. 1, 1-6, 1989.
45. Westphal, W. B. and A. Sils, "Dielectric Constants and Loss Data,", Airforce Materials Laboratory, Wright Patterson Airforce Base, Ohio, Techn. Rept. AFML-TR-72-39, 1972.
46. Bartnikas, R. and R. M. Eichhorn, "Engineering Dielectrics, Volume IIA, Electrical Properties of Solid Insulating Materials: Molecular Structure and Electrical Behavior," ASTM Special Techn. Publication, 783, March 1983.
47. Frost, H. M., "Capability for Measuring Millimeter-Wave Dielectric Properties in Free Space and at Elevated Temperatures,", DOE DAFS/ADIP/SPM Semi-annual Progress Report on Fusion Reactor Materials, Los Alamos National Laboratory (LA-UR-86-4226), 1986.
48. Frost, H. M., "Dielectric properties of ceramics," Materials Science and Technology Review, 1986.
49. Bosisio, R. G., R. Dallaire, and P. Phromothansy, "A non contact temperature monitor for the automatic control of microwave ovens," J. of Microwave Power, Vol. 12, No. 4, 309-317, 1977.
50. Araneta, J. C., M. Brodwin, and G. E. Kriegsmann, "High-ternperature microwave characterization of dielectric rods," IEEE Trans., Vol. 32, No. 10, 1328-1335, 1984.
51. Wong, D. K., "Microwave Dielectric Constants of Metal Oxides at High Temperatures,", M.Sc. Thesis, University of Alberta, Edmonton, Canada, 1975.
52. Gibson, C., I. Mathews, and A. Samuel, "Microwave enhanced diffusion in polymeric materials," J. of Microwave Power and Electromagnetic Energy, Vol. 23, No. 1, 17-28, 1988.
53. Janney, M. A., H. D. Kimrey, and M. A. Schmidt, "Grain growth in microwave-annealed alumina,", American Ceramics Society, 99th Annual Meeting Symp. IX: Symp. on Microwave Processing of Ceramics, April 1989.
54. McDonald, A. A., Microwave Breakdown in Gases, Wiley, 1966.
55. Johnson, D. L. and M. E. Brodwin, , EPRI Research Project 2730-01, Interim Report, March 1987.
56. Ishii, T. K., "Theoretical analysis of arcing structure in microwave ovens," J. of Microwave Power, Vol. 18, No. 4, 337-344, 1983.
57. Asmussen, J. and R. Garard, "Precision microwave applicators and systems for plasma and material processing," Mat. Res. Soc. Symp. Proc., Vol. 124, 347-352, 1988.
58. Salsman, J. B. and R. H. Church, "The rapid formation of tungsten carbide in a microwave induced plasma,", American Ceramics Society, 99th Annual Meeting Symp. IX: Syrnp. on Microwave Processing of Ceramics, April 1989.