1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Goorjian, P. M. and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation of femtosecond electromanetic solitons," Opt. Lett., Vol. 17, 180-182, 1992.
doi:10.1364/OL.17.000180 Google Scholar
3. Goorjian, P. M., A. Taflove, R. M. Joseph, and S. C. Hagness, "Computational modeling of femtosecond optical solitons from Maxwell's equations," IEEE J. Quantum Electron., Vol. 28, 2416-2422, 1992.
doi:10.1109/3.159548 Google Scholar
4. Ziolkowski, R. W. and J. B. Judkins, "Linear-nonlinear interfaces: Results from Full-Wave, vector Maxwell's equation NLFDTD simulations," 1993 Integrated Photonics Research Technical Digest, Vol. 10, 128-131, 1993. Google Scholar
5. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Mcrowave Theory Tech., Vol. 23, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640 Google Scholar
6. Taflove, A., "Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Wave Motion, Vol. 10, 547-582, 1988.
doi:10.1016/0165-2125(88)90012-1 Google Scholar
7. Umashankar, K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. Electromagn. Compat., Vol. 24, 397-405, 1982.
doi:10.1109/TEMC.1982.304054 Google Scholar
8. Taylor, C. D., D, H. Lam, and T. H. Shumpert, "Electromagnetic pulse scattering in time-varying inhomogeneous media," IEEE Trans. Antenna Propagat., Vol. 17, 585-589, 1969.
doi:10.1109/TAP.1969.1139523 Google Scholar
9. Merewether, D. E., "Transient currents induced on a metallic body of revolution by an electromagnetic pulse," IEEE Trans. Electromagn. Compat., Vol. 13, 41-44, 1971.
doi:10.1109/TEMC.1971.303117 Google Scholar
10. Holland, R., L. Simpson, and K. S. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. 22, 203-209, 1980.
doi:10.1109/TEMC.1980.303880 Google Scholar
11. Zhang, X., J. Fang, K. K. Mei, and Y. Liu, "Calculations of the dispersive characteristics of microstrips be the time-domain finite-difference method," IEEE Trans. Microwave Theory Tech., Vol. 36, 263-267, 1988.
doi:10.1109/22.3514 Google Scholar
12. Chu, S. T. and S. K. Chaudhuri, "A Finite-difference timedomain method for the design and analysis of guided-wave optical structures," IEEE J. Lightwave Technol., Vol. 5, 2033-2038, 1989.
doi:10.1109/50.41625 Google Scholar
13. Chu, S. T., Modeling of guided-wave optical structures by the finite-difference time-domain method, Ph.D. Thesis, Dept. Elect. Eng., University of Waterloo, 1990.
14. Chu, S. T., S. K. Chaudhuri, and W. P. Huang, "Simulation and analysis of waveguide based optical integrated circuits," Computer Physics Communications, Vol. 68, 451-484, 1991.
doi:10.1016/0010-4655(91)90213-5 Google Scholar
15. Lee, S. M., W. C. Chew, M. Moghaddam, M. A. Nasir, S. L. Chuang, R. W. Herrick, and C. L. Balestra, "Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method," IEEE J. Lightwave Tech., Vol. 9, 1471-1480, 1991.
doi:10.1109/50.97635 Google Scholar
16. Kimmel, J. S. and D. A. Christensen, "Finite-difference timedomain modeling and experimental characterization of planar waveguide fluorescence sensors equation NL-FDTD simulations," SPIE Chemical, Biochemical, and Enviromental Fiber Sensors 111, 1587, 136-146, 1991. Google Scholar
17. Hawkins, R. J., N. K. Madsen, J. S. Kallmm, M. D. Feit, C. C. Shang, B. W. Shore, and J. F. DeFord, "Full-wave simulations of the thumbtack laser," 1993 Integrated Photonics Research Technical Digest, Vol. 10, 116-119, 1993. Google Scholar
18. Sano, E. and T. Shibata, "Fullwave analysis of picosecond photoconductive switches," IEEE J. Quantun Electron., Vol. 26, 372-377, 1990.
doi:10.1109/3.44970 Google Scholar
19. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge University, 1986.
20. Lakshmikantharn, V. and D. Trigiante, Theory of Diflerence Equations: Numerical Methods and Applications, Academic Press, 1988.
21. Choi, D. K., A Development of hybrid FD-TD/TLM method and its application to plannar millimeter wave waveguide structures, Ph.D. Thesis, Dept. Elect. Eng., University of Ottawa, 1986.
22. Viehnevetsky, R., Wave Propagation Analysis of the Box and Other Implicit Approximations of Hyperbolic Equations, 1986.
23. Trefethrn, L. N., "Group velocity in finite difference schemes," SIAM Review, Vol. 24, 113-137, 1982.
doi:10.1137/1024038 Google Scholar
24. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comp., Vol. 31, 629-651, 1977.
doi:10.1090/S0025-5718-1977-0436612-4 Google Scholar
25. Trefethen, L. N. and L. Halpern, "Well-posedness of one-way equations and absorbing boundary conditions," Math. Comp., Vol. 47, 421-435, 1986.
doi:10.1090/S0025-5718-1986-0856695-2 Google Scholar
26. Higdon, R. L., "Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation," Math. Comp., Vol. 47, 437-459, 1986. Google Scholar
27. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. Electromagn. Compat., Vol. 23, 88-97, 1981.
doi:10.1109/TEMC.1981.303899 Google Scholar
28. Bayless, A. and E. Turkel, "Radiation boundary conditions for wave-like equations," Commun. Pure Appl. Math., Vol. 33, 707-725, 1980.
doi:10.1002/cpa.3160330603 Google Scholar
29. Kriegsmann, G. A., A. Taflove, and K. R. Umashankar, "A New formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach," IEEE Trans. Antennas Propag., Vol. 35, 153-160, 1987.
doi:10.1109/TAP.1987.1144062 Google Scholar
30. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equation," IEEE Trans. Electromagn. Compat., Vol. 23, 377-382, 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
31. Fang, J. and K. K. Mei, "A super-absorbing boundary akgom;thm for solving electromagnetic problems by the time-domain finite-difference method," IEEE AP-S and URSI Symp., Syracuse, June 1988. Google Scholar
32. Liao, Z. P., H. L. Wong, B. Yang, and Y. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica (Series A), Vol. 37, 1063-1076, 1984. Google Scholar
33. Vichnevetsky, R., "Energy and group velocity in semi discretizations of hyperbolic equations," Math. Comput. Simulation, Vol. 23, 333-343, 1981.
doi:10.1016/0378-4754(81)90020-3 Google Scholar
34. Okoshi, T., Optical Fibers, Academic Press, 1982.
35. Davies, J. B., F. A. Fernandez, and G. Y. Philippou, "Finite element analysis of all modes in cavities with circular symmetry," IEEE Trans. Microwave Theory Tech., Vol. 30, 1975-1980, 1982.
doi:10.1109/TMTT.1982.1131353 Google Scholar
36. Koshiba, M., H. Kazuya, and M. Suzuki, "Improved finite-element formulation in terms of the magnetic field vector for dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 33, 227-233, 1985.
doi:10.1109/TMTT.1985.1132985 Google Scholar
37. Mabaya, N., P. E. Lagasse, and P. Vandenbulcke, "Finite element analysis of optical waveguides," IEEE Trans. Microwave Theory Tech., Vol. 29, 600-605, 1981.
doi:10.1109/TMTT.1981.1130400 Google Scholar
38. Chu, S. T. and S. K. Chaudhuri, "Combining modal analysis and the FD-TD method in the study of dielectric waveguide problems," IEEE Trans. Microwave Theory Tech., Nov. 1990. Google Scholar
39. Golub, G. H. and C. F. Van Loan, Matriax Computation, The Johns Hopkins University Press, 1983.
40. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chap man and Hall, 1983.
41. Huang, W. P., S. T. Chu, A. Goss, and S. K. Chaudhuri, "A Scalar finite-difference time-domain approach for guided-wave optics," IEEE Photon. Technol. Lett., Vol. 3, 524-526, 1991.
doi:10.1109/68.91022 Google Scholar
42. Huang, W. P., S. T. Chu, and S. K. Chaudhuri, "A Semivectorial finite-difference time-domain approach for guided-wave optics," IEEE Photon. Technol. Lett., Vol. 3, 803-806, 1991.
doi:10.1109/68.84499 Google Scholar
43. Lubbers, R., F. Hunsberger, and K. Kunz, "A frequency-dependent time domain formulation for transient propagation in plasma," lEEE Trans. Antennas Propag., Vol. 39, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar
44. Lubbers, R. and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antennas Propag., Vol. 40, 1297-1301, 1992.
doi:10.1109/8.202707 Google Scholar
45. Joseph, R., S. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pules," Opt. Lett., Vol. 16, 1412-1414, 1991.
doi:10.1364/OL.16.001412 Google Scholar