1. Harrington, R. F., Field Computation by Moment Method, IEEE Press, 1993.
doi:10.1109/9780470544631
2. Ludwig, A. C., "A Comparison of spherical wave boundary value matching versus integral equation scattering solutions for a perfectly conducting body," IEEE Trans. Ant. Prop., Vol. AP-34, No. 7, 857-865, July 1986.
doi:10.1109/TAP.1986.1143917 Google Scholar
3. Ludwig, A., "A new technique for numerical electromagnetics," IEEE Antennas Propagat. Newsletter, Vol. 3, 40-41, Feb. 1889. Google Scholar
4. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, London, 1990.
5. Leviatan, Y. and A. Boag, "Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model," IEEE Trans. Ant. Prop., Vol. 35, No. 10, 1119-1126, Oct. 1987.
doi:10.1109/TAP.1987.1143994 Google Scholar
6. Leviatan, Y., A. Boag, and A. Boag, "Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model," IEEE Trans. Ant. Prop., Vol. 36, No. 7, 1026-1031, Jul. 1988.
doi:10.1109/8.7209 Google Scholar
7. Leviatan, Y., A. Boag, and A. Boag, "Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies --- theory and numerical solution," IEEE Trans. Ant. Prop., Vol. 36, No. 12, 1722-1734, Dec. 1988.
doi:10.1109/8.14394 Google Scholar
8. Leviatan, Y., A. Boag, and A. Boag, "Analysis of electromagnetic scattering using a current model method," Computer Physics Communications, Vol. 68, 331-345, 1991.
doi:10.1016/0010-4655(91)90207-2 Google Scholar
9. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Ant. Prop., Vol. 42, No. 3, 366-372, Mar. 1994.
doi:10.1109/8.280723 Google Scholar
10. Boag, A. and R. Mittra, "Complex multipole-beam approach to three-dimensional electromagnetic scattering problems," J. of the Opt. Soc. of Am., Vol. 11, No. 3, 1505-1512, Apr. 1994.
doi:10.1364/JOSAA.11.001505 Google Scholar
11. Erez, E. and Y. Leviatan, "Electromagnetic scattering analysis using a model of dipoles located in complex space," IEEE Trans. Ant. Prop., Vol. 42, No. 12, 1620-1624, Dec. 1994.
doi:10.1109/8.362812 Google Scholar
12. Leviatan, Y., Z. Baharav, and E. Heyman, "Analysis of electromagnetic scattering using arrays of fictitious sources," IEEE Trans. Ant. Prop., Vol. 43, No. 10, 1091-1098, Oct. 1995.
doi:10.1109/8.467645 Google Scholar
13. Baharav, Z. and Y. Leviatan, "Scattering analysis using fititious wavelet array sources," Journal of Electromagnetic Waves and Applications, Vol. 10, 1683-1697, 1996.
doi:10.1163/156939396X00397 Google Scholar
14. Eisler, S. and Y. Leviatan, "Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model," IEE Proceedings, Pt. H, Vol. 136, No. 6, 431-438, Dec. 1989. Google Scholar
15. Hafner, C., J. Waldvogel, J. Mosig, J. Zheng, and Y. Brand, "On the Combination of MMP with MoM," Appl. Comp. Elec. Soc. J., Vol. 9, No. 3, 18-27, 1994. Google Scholar
16. Boag, A., E. Michelssen, and R. Mittra, "Hybrid multipole-Beam approach to electromagnetic scattering problems," Appl. Comp. Elec. Soc. J., Vol. 9, No. 3, 7-17, 1994. Google Scholar
17. Rodriguez, J. L., F. Obelleiro, and A. G. Pino, "A hybrid multipolar-expansion-moment-method approach for electromagnetic scattering problems," Micr. Opt. Tech. Lett., Vol. 11, No. 6, 304-308, Apr. 1996.
doi:10.1002/(SICI)1098-2760(19960420)11:6<304::AID-MOP5>3.0.CO;2-N Google Scholar
18. Leuchtmann, P., "MMP modeling technique with curved line multipoles," Appl. Comp. Elec. Soc. J., Vol. 9, No. 3, 69-78, 1994. Google Scholar
19. Leutchmann, P., "The construction of practically useful fast converging expansions for the GMT," 1989 IEEE AP-S Intl. Symp., 176-179, 1989. Google Scholar
20. Shifman, Y., M. Friedmann, and Y. Leviatan, "Analysis of electromagnetic scattering by cylinders with edges using a hybrid moment method," IEE Proceedings Microwave, Antennas and Propagation, Vol. 144, No. 4, 235-240, Aug. 1997.
doi:10.1049/ip-map:19971186 Google Scholar
21. Beshir, K. L. and J. E. Richie, "On the location and number of expansion centers for the generalized multipole technique," IEEE Trans. on Elec. Compat., Vol. 38, No. 2, 177-180, May 1996.
doi:10.1109/15.494621 Google Scholar
22. Rodriguez, J. L. and A. G. Pino, "An automatic location algorithm of MoM basis in the hybrid GMT-MoM method," Micr. Opt. Tech. Lett., Vol. 13, No. 6, 327-329, Dec. 1996. Google Scholar
23. Rodriguez, J. L., "Desarrollo de m´etodos eficientes para el estudio de problemas de dispersion electromagnetica,", Ph. D. Thesis, E. T. S. I. Telecomunicaci´on. Universidad de Vigo, 1997. Google Scholar
24. Boag, A., Y. Leviatan, and A. Boag, "On the use of SVD-improved point matching in the current-model method," IEEE Trans. Ant. Prop., Vol. 41, No. 7, 926-933, Jul. 1993.
doi:10.1109/8.237624 Google Scholar
25. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1989.
26. Canning, F. X., "Singular value decomposition of integral equations of EM and applications to the cavity resonance problem," IEEE Trans. Ant. Prop., Vol. 37, No. 9, 1156-1163, Sep. 1989.
doi:10.1109/8.35796 Google Scholar
27. Canning, F. X., "Protecting EFIE-based scattering computations from effects of interior resonances," IEEE Trans. Ant. Prop., Vol. 39, No. 11, 1545-1552, Nov. 1991.
doi:10.1109/8.102767 Google Scholar
28. Sarkar, T. K. and S. M. Rao, "A simple technique for solving E-field integral equation for conducting bodies at internal resonances," IEEE Trans. Ant. Prop., Vol. 30, No. 6, 1250-1254, Nov. 1982.
doi:10.1109/TAP.1982.1142968 Google Scholar
29. Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 1998.
doi:10.1137/1.9780898719697
30. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston, Washington, D.C., 1997.
31. Hansen, P. C. and D. P. O’Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal of Scientific Computing, Vol. 14, 1487-1503, 1993.
doi:10.1137/0914086 Google Scholar
32. Hanke, M., "Limitations of the L-curve method in ill-posed problems," BIT, Vol. 36, 287-301, 1996.
doi:10.1007/BF01731984 Google Scholar