1. Delves, L. M., Numerical Solution of Integral Equations, Clarendon Press, 1974.
2. Hackbusch, W., "Integral equations theory and numerical treatment," ISNM, Vol. 120, Birkhauser Verlag, Switzerland, 1995. Google Scholar
3. Tikhonov, A. N. and V. Y. Arsenin, On the Solution of Ill-posed Problems, John Wiley and Sons, New York, 1977.
4. Backus, G. and F. Gilber, "Numerical applications of a formalism for geophysical inverse problems," Geophys.J.R oy.Astr on. Soc., Vol. 13, 247-276, 1967.
doi:10.1111/j.1365-246X.1967.tb02159.x Google Scholar
5. Harrington, R. F., Field Computation by Moment Method, Hacmillan Press, New York, 1968.
6. Beylkin, G., R. Coifman, and V. Rokhlin, "Fast wavelet transform and numerical algorithm I," Comm. Pure Appl. Math., Vol. 44, 141-183, 1991.
doi:10.1002/cpa.3160440202 Google Scholar
7. Alpert, B. K., G. Beylkin, R. Coifman, and V. Rokhlin, "Wavelet-like bases for the fast solution of second-kind integral equation," SIAM J.Sci.Comp., Vol. 14, 159-184, January 1993.
doi:10.1137/0914010 Google Scholar
8. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in the method of moments," IEEE Trans Antennas Propagat, Vol. AP-41, No. 5, 610-619, 1993.
doi:10.1109/8.222280 Google Scholar
9. Goswami, J. C., A. K. Chan, and C. K. Chui, "On solving first-kind integral equations using wavelets on a bounded interval," IEEE Trans Antennas Propagat, Vol. AP-43, No. 6, 614-622, June 1995.
doi:10.1109/8.387178 Google Scholar
10. Wang, G. F., "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects," IEEE Trans Antennas Propagat., Vol. AP-43, No. 2, 170-178, February 1995.
doi:10.1109/8.366379 Google Scholar
11. Brandt, A., "Multi-level adaptive solutions to boundary value problems," Mathematics of Computation, Vol. 31, 330-390, 1977. Google Scholar
12. Hackbusch, W., Multigrid Methods and Applications, Springer-Verlag, New York, 1985.
13. McCormick, S. F., Multigrid Methods: Theory, Applications and Super-computing, Marcel Dekker, New York, 1988.
14. Mandel, J., "On multilevel iterative methods for integral equations of the second kind and related problems," Numer.Math., Vol. 46, 147-157, 1985.
doi:10.1007/BF01400261 Google Scholar
15. Hemker, P. W. and H. Schippers, "Multiple grid methods for the solution of Fredholm integral equations of the second kind," Mathematics of Computation, Vol. 36, No. 153, 1981.
doi:10.1090/S0025-5718-1981-0595054-2 Google Scholar
16. Kalbasi, K. and K. R. Demarest, "A multilevel enhancement of the method of moments," 7th Ann. Rev. Progress Appl. Computat. Electromagn., Naval, Monterey, CA, 254-263, March 1991. Google Scholar
17. Kalbasi, K. and K. R. Demarest, "A multilevel formulation of the method of moments," IEEE Trans. Antennas Propagat., Vol. AP-41, No. 5, 589-599, May 1993.
doi:10.1109/8.222278 Google Scholar
18. Su, C. and T. K. Sarkar, "A multiscale moment method for solving Fredholm integral equation of the first kind," J. Electromag. Waves Appl., Vol. 12, 97-101, 1998.
doi:10.1163/156939398X00089 Google Scholar
19. Su, C. and T. K. Sarkar, "Scattering from perfectly conducting strips by utilizing an adaptive multiscale moment method," Progress In Electromagnetics Research, Vol. 19, 173-197, 1998. Google Scholar
20. Su, C. and T. K. Sarkar, "Electromagnetic scattering from two-dimensional electrically large perfectly conducting objects with small cavities and humps by use of adaptive multiscale moment methods (AMMM)," J. Electromag. Waves Appl., Vol. 12, 885-906, 1998.
doi:10.1163/156939398X01114 Google Scholar
21. de Boor A Practical Guide to Splines, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4612-6333-3