1. Brown, J., "Artificial dielectrics," Progress in Dielectrics, Hey-wood (Ed.), 194-225, London, 1960. Google Scholar
2. Mariotte, F., S. A. Tretyakov, and B. Sauviac, "Isotropic chiral composite modeling: comparison between analytical, numerical and experimental results," Microwave and Optical Technology Letters, Vol. 7, No. 18, 861-864, 1994.
doi:10.1002/mop.4650071814 Google Scholar
3. Mariotte, F. and J.-P. Parneix, Proceedings Chiral’94, 3rd International Conference on Chiral, Bi-isotropic and Bi-anisotropic Media, Perigueux, France, 1994.
4. Lindell, I. V., A. H. Sihvola, S. A. Tretiakov, and A. J. Vitanen, Electromagnetic Wave in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.
5. Tretiakov, S. A. and F. Mariotte, "Maxwell garnett modeling of uniaxial chiral composites with bianisotropic inclusions," J. Electromagnetic Waves and Applications, Vol. 9, No. 7-8, 1011-1025, 1995.
doi:10.1163/156939395X00695 Google Scholar
6. Mariotte, F., F. Guerin, and A. Bourgeade, "Numerical computations of the electromagnetic field scattered by complex chiral bodies," J. Electromagnetic Waves and Applications, Vol. 9, No. 11-12, 1459-1485, 1995.
doi:10.1163/156939395X00163 Google Scholar
7. Ziolkowski, R. W. and F. Auzanneau, "Passive artificial molecule realizations of dielectric materials," J. Appl. Phys., Vol. 82, No. 7, 3195-3198, Oct. 1997.
doi:10.1063/1.365625 Google Scholar
8. Ziolkowski, R. W. and F. Auzanneau, "Artificial molecule realization of a magnetic wall," J. Appl. Phys., Vol. 82, No. 7, 3192-3194, Oct. 1997.
doi:10.1063/1.365624 Google Scholar
9. Auzanneau, F. and R. W. Ziolkowski, "Etude theorique de materiaux bianisotropes controlables," Journal de Physique III, Vol. 7, 2405-2418, Dec. 1997.
doi:10.1051/jp3:1997267 Google Scholar
10. Auzanneau, F. and R. W. Ziolkowski, "Theoretical study of synthetic bianisotropic smart materials," J. EM Waves and Appl., Vol. 12, No. 3, 353-370, Oct. 1997. Google Scholar
11. Kashiwa, T. and I. Fukal, "A treatment by the FDTD method of the dispersive characteristics associated with electronic polarization," Microwave and Optical Technology Letters, Vol. 3, No. 6, 1326-1328, 1990.
doi:10.1002/mop.4650030606 Google Scholar
12. Joseph, R. M. and A. Taflove, "Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulse," Opt. Letter., Vol. 16, No. 18, 1412-1414, 1991.
doi:10.1364/OL.16.001412 Google Scholar
13. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Floria, 1993.
14. Young, J. L., "Propagation in linear dispersive media: Finite difference time domain methodologies," IEEE Trans. Antennas and Propagat., Vol. AP-43, 422-426, Apr. 1995.
doi:10.1109/8.376042 Google Scholar
15. Judkins, J. B. and R. W. Ziolkowski, "Finite difference time domain modeling of nonperfectly codnducting thin-film gratings," J. Opt. Soc. Am. A, Vol. 12, No. 9, 1974-1983, Sept. 1995.
doi:10.1364/JOSAA.12.001974 Google Scholar
16. Taflove, A., Computational Electrodynamics. The Finite Difference Time Domain Method, Artech House, 1995.
17. Okoniewski, M. and M. A. Stuchly, "Simple treatment of multiterm dispersion in FDTD," IEEE Microwave and Guided Wave Lett., Vol. 7, 121-123, 1997.
doi:10.1109/75.569723 Google Scholar
18. Taflove, A., Advances in Computational Electrodynamics, Artech House, 1998.
19. Okoniewski, M. and E. Okoniewska, "FDTD analysis of magnetized ferrites: A more efficient algorithm," IEEE Microwave and Guided Wave Lett., 169-171, 1994.
doi:10.1109/75.294281 Google Scholar
20. Melon, C., Ph. Leveque, T. Monediere, A. Reineix, and F. Jecko, "Frequency dependent finite difference time domain formulation applied to ferrite material," IEEE Microwave and Opt. Tech. Lett., Vol. 7, 577-579, 1994.
doi:10.1002/mop.4650071214 Google Scholar
21. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Prieto, "FDTD analysis of magnetized ferrites: Application to the calculation of dispersion characteristics of ferrite loaded waveguides," IEEE Trans. Microwave Theory and Techniques, Vol. 43, 350-357, 1995.
doi:10.1109/22.348095 Google Scholar
22. Ziokowski, R. W. and J. B. Judkins, "NI-FDTD modeling of linear and nonlinear corrugated waveguides," J. Opt. Soc. Am. B, Vol. 11, No. 9, 1565-1575, 1994.
doi:10.1364/JOSAB.11.001565 Google Scholar
23. Ziokowski, R. W. and D. M. Gogny, "Ultrafast pulse interaction with two-level atoms," Phys. Rev. A, Vol. 52, No. 4, 3082-3094, Oct. 1995.
doi:10.1103/PhysRevA.52.3082 Google Scholar
24. Toland, B., J. Lin, B. Houshmand, and T. Itoh, "FDTD analysis of an active antenna," IEEE Microwave Guided Wave Lett., Vol. 3, 423-425, Nov. 1993. Google Scholar
25. Toland, B. and T. Itoh, "Modeling od nonlinear active regions with the FDTD method," IEEE Microwave Guided Wave Lett., Vol. 3, 333-335, Sept. 1993.
doi:10.1109/75.244870 Google Scholar
26. Kuo, C. N., V. A. Thomas, S. T. Chew, B. Houshmand, and T. Itoh, "Small signal analysis of active circuit using FDTD algorithm," IEEE Microwave Guided Wave Lett., Vol. 5, 216-218, July 1995. Google Scholar
27. Kuo, C. N., R. B. Wu, B. Houshmand, and T. Itoh, "Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach," IEEE Microwave Guided Wave Lett., Vol. 6, 199-201, May 1996. Google Scholar
28. Kuo, C. N., B. Houshmand, and T. Itoh, "Full wave analysis of packaged microwave circuits with active and nonlinear devices: An FDTD approach," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 3, 819-826, May 1997. Google Scholar
29. Picket-May, M., A. Taflove, and J. Baron, "FDTD modeling of digital signal propagation in 3-D circuits with passive and active loads," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 8, 1514-1523, Aug. 1994.
doi:10.1109/22.297814 Google Scholar
30. Thomas, V. A., M. E. Jones, M. Picket-May, A. Taflove, and E. Harrigan, "The use of spice lumped circuits as sub-grid models for FDTD analysis," IEEE Microwave Guided Wave Lett., Vol. 4, 141-143, May 1994.
doi:10.1109/75.289516 Google Scholar
31. Alsunaidi, M. A., S. M. Sohel-Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time domain model," IEEE Microwave Guided Wave Lett., Vol. 44, No. 6, 799-808, June 1996. Google Scholar
32. Sui, W., D. A. Christensen, and C. H. Durney, "Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lomped elements," IEEE Trans. Microwave Theory Tech., Vol. 40, 724-730, Apr. 1992.
doi:10.1109/22.127522 Google Scholar
33. Auzanneau, F. and R. W. Ziolkowski, "Matrix formulation for the analysis and design of synthetic linear and nonlinear materials," PIERS, Vol. 98, 1170, Nantes, 13-17, July 1998. Google Scholar
34. Auzereau, L., Prise en compte de circuits complexes non lineaires dans les codes diff´erences finies dans le domaine temporel. Applications en CEM et dans le domaine des t´el´ecommunications, These de Ph.D., Universite de Limoges (France), July 1997.
35. Tristant, F., A. Reineix, F. Torres, L. Auzereau, and B. Jecko, "Nonlinear circuit modeling tools coupling with FDTD method," Microwave and Optical Technology Letters, Vol. 8, No. 2, 108-112, 1998.
doi:10.1002/(SICI)1098-2760(19980605)18:2<108::AID-MOP7>3.0.CO;2-E Google Scholar
36. Chua, L. O., Introduction to Nonlinear Network Theory, McGraw Hill, 1969.
37. Collin, R. E., Antennas and Radiowave Propagation, McGraw-Hill Inc., 1985.
38. Auzanneau, F. and R. W. Ziolkowski, "Microwave signal rectification using artificial composite materials composed of diode loaded, electrically small dipole antennas," IEEE Trans. Microwave Theory and Tech., Vol. 46, No. 11, Nov. 1998. Google Scholar
39. Diaz, R. and N. Alexopoulos, "An analytical continuation method for the analysis and design of dispersive materials," IEEE Trans. Microwave Theory and Tech., Vol. 45, No. 11, 1602-1610, Nov. 1997. Google Scholar