1. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
2. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.
3. Morse, P. M. and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, 1968.
4. Love, A. E. H., A Treatise On The Mathematical Theory of Elasticity, Dover.
5. Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill, 1956.
6. Takeuchi, H., Theory Of The Earth’s Interior, Blaisdell, 1966.
7. Einstein, A., "Zur elektrodynamik bewegter korper," Ann. Phys. (Lpz.), Vol. 17, 891-921, 1905; English translation: ``On the electrodynamics of moving bodies," The Principle of Relativity, Dover.
doi:10.1002/andp.19053221004 Google Scholar
8. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.
9. Censor, D., "Simultaneity, causality, and spectral representations,", in process. Google Scholar
10. Censor, D., "Electrodynamics, topsy-turvy special relativity, and generalized Minkowski constitutive relations for linear and nonlinear systems," PIER, Progress In Electromagnetics Research, Vol. 18, 261-284, 1998.
doi:10.2528/PIER97071000 Google Scholar
11. Minkowski, H., "Die grundgleichungen f¨ur die elektromagnetischen vorgange in bewegten korpem," Nachrichten Ges. Wiss. Gottingen, 53-116, 1908. Google Scholar
12. Sommerfeld, A., Electrodynamics, Dover, 1964.
13. Censor, D. and Y. Ben-Shimol, "Wave propagation in weakly nonlinear bi-anisotropic and bi- isotropic media," JEMWA Journal of Electromagnetic Waves and Applications, Vol. 11, 1763-1779, 1997.
doi:10.1163/156939397X00503 Google Scholar
14. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, 1973.
15. van Bladel, J., Singular Electromagnetic Fields and Sources, Clarendon Press, 1991.
16. Lindell, I. V., Methods for Electromagnetic Field Analysis, Oxford Science publications.
17. Milne, R. D., Applied Functional Analysis, An Introductory Treatment, Pitman, 1980.
18. Censor, D., "Quasi Doppler effects associated with spatiotemporal translatory, moving, and active boundaries," JEMWA Journal of Electromagnetic Waves and Applications, Vol. 13, 145-174, 1999.
doi:10.1163/156939399X00790 Google Scholar
19. Censor, D., "Application-oriented ray theory," Intl. Journal of Electrical Engineering Education, Vol. 15, 215-223, 1978.
doi:10.1177/002072097801500305 Google Scholar
20. Molcho, J., D. Censor, and J. Molcho, "A simple derivation and a classroom example for Hamiltonian ray propagation," American Journal of Physics, Vol. 54, 351-353, 1986.
doi:10.1119/1.14621 Google Scholar
21. Censor, D., "Application-oriented relativistic electrodynamics," PIER- Progress In Electromagnetics Research, Editor J. A. Kong, Vol. 4, 119-158, Elsevier, 1991. Google Scholar
22. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover, Dover.
23. Censor, D., "Ray tracing in weakly nonlinear moving media," Journal of Plasma Physics, Vol. 16, 415-426, 1976.
doi:10.1017/S0022377800020316 Google Scholar