Vol. 29
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Scattering by an Arbitrarily Shaped Rotationally Uniaxial Anisotropic Object: Electromagnetic Fields and Dyadic Green's Fucntions
By
, Vol. 29, 87-106, 2000
Abstract
The electromagnetic scattering by a three-dimensional arbitrarily shaped rotationally uniaxial anisotropic object is studied. Electromagnetic fields in a uniaxial medium are solved for first using the method of separation of variables, and then expressed in a very compact form by introducing the modified spherical vector wave functions. The equivalence theorem and the T-matrix method are applied in the analysis of the scattering problem. The scattered fields and the dyadic Green's functions both external and internal to the scatterer are derived in terms of spherical vector wave functions and matrix-form coefficients. Through making use of the dyadic Green's functions obtained, numerical results are provided for an incident field excited by an infinitesimal dipole. The scatterers are assumed to be prolate and oblate dielectric spheroids with the rotational z-axis. The angular scattering intensities in far-zone are plotted for all these cases. And some conclusions are also drawn eventually from numerical discussions.
Citation
S. Liu L.-W. Li M.-S. Leong T. S. Yeo , "Scattering by an Arbitrarily Shaped Rotationally Uniaxial Anisotropic Object: Electromagnetic Fields and Dyadic Green's Fucntions," , Vol. 29, 87-106, 2000.
doi:10.2528/PIER99090205
http://www.jpier.org/PIER/pier.php?paper=9909025
References

1. Waterman, P. C., "Scattering by dielectric obstacles," Alta Freq., Vol. 38, 348-352, 1969.

2. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, Dec. 1974.
doi:10.1016/0009-2614(74)85144-4

3. Barber, P. W. and C. Yeh, "Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies," Appl. Opts., Vol. 14(12), 2864-2872, Dec. 1975.
doi:10.1364/AO.14.002864

4. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects," Applied Optics, Vol. 24, No. 23, 4146-4154, Dec. 1985.
doi:10.1364/AO.24.004146

5. Monzon, J. C., "Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: Application to scattering by a sphere," IEEE Trans. Antennas Propagat., Vol. 37, No. 6, 728-735, June 1989.
doi:10.1109/8.29359

6. Wong, K.-L. and H.-T. Chen, "Electromagnetic scattering by a uniaxially anisotropic sphere," IEE Proceedings — H, Vol. 139, No. 4, 314-318, Aug. 1992.

7. Li, L. W., T. S. Yeo, P. S. Kooi, and M. S. Leong, "Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of tcs’s in terms of spheroidal wave functions," Progress In Electromagnetics Research, Vol. 18, Jin Au Kong, Ed., Vol. 18, 127–150, 1998.

8. Li, L. W., M. S. Leong, Y. Huang, and T. S. Yeo, "Dyadic Green’s functions in the presence of an arbitrarily shaped dielectric object," 9th MINDEF/NUS Joint R & D Seminar, 37-42, Jan. 1999.

9. Barber, P. W., J. F. Owen, and R. K. Chang, "Resonant scattering for characterization of axisymmetric dielectric objects," IEEE Trans. Ant. Prop., Vol. 30, No. 2, 168-172, Feb. 1982.
doi:10.1109/TAP.1982.1142770

10. Hill, S. C., A. C. Hill, and P. W. Barber, "Light scattering by size/shape distributions of soil particles and spheroids," Applied Optics, Vol. 23, 1025-1031, 1984.
doi:10.1364/AO.23.001025

11. Morgan, M. A., D. L. Fisher, and E. A. Milne, "Electromagnetic scattering by stratified inhomogeneous anisotropic media," IEEE Trans. Ant. Prop., Vol. 35, No. 2, 191-197, Feb. 1987.
doi:10.1109/TAP.1987.1144069

12. Uzunoglu, N. K., P. G. Cottis, and J. G. Fikioris, "Excitation of electromagnetic waves in a pyroelectric cylinder," IEEE Trans. Ant. Prop., Vol. 33, No. 1, 90-95, Jan. 1995.
doi:10.1109/TAP.1985.1143471

13. Monzon, J. C. and N. J. Damaskos, "Two-dimensional scattering by a homogeneous anisotropic rod," IEEE Transactions on Antenna and Propagation, Vol. 34, No. 10, 1243-1249, Oct. 1986.
doi:10.1109/TAP.1986.1143739

14. Hasan, A. M. and P. L. E. Uslenghi, "Electromagnetic scattering from nonlinear anisotropic cylinders – Part I: fundamental frequency," IEEE Trans. Ant. Propa., Vol. 38, 523-533, 1990.
doi:10.1109/8.52271

15. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, The 2nd edition, 1986.

16. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, IEEE Press, Piscataway, New Jersey, The 2nd edition, 1994.

17. Barber, P. W. and S. C. Hill, Light Scattering by Particles: Computational Methods, World Scientific, 1990.
doi:10.1142/0784

18. Stratton, J. A., Electromagnetic Theory, McGraw-Will, New York, 1941.