1. Rao, K. R. and P. Yip, Discrete Cosine TransformAlgorithms, Advantages, Applications, Academic Press, London, 1990.
2. Chen, W. A., C. Harrison, and S. C. Fralick, "A fast computational algorithm for the discrete cosine transform," IEEE Trans. Commu., Vol. 25, No. 9, 1004-1011, 1977. Google Scholar
3. Lee, B. G., "A new algorithm to compute the discrete cosine ransform," IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-32, No. 6, 1243-1245, 1984. Google Scholar
4. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM J. Sci. Comput., Vol. 14, No. 6, 1368-1393, November 1993. Google Scholar
5. Beylkin, G., "On the fast Fourier transform of functions with singularities," Appl. Computat. Harmonic Anal., Vol. 2, 363-382, 1995. Google Scholar
6. Liu, Q. H. and N. Nguyen, "An accurate algorithm for nonuniform fast Fourier transforms," IEEE Microwave Guided Wave Lett., Vol. 8, No. 1, 18-20, 1998. Google Scholar
7. Liu, Q. H. and X. Y. Tang, "Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT)," Electronics Letters, Vol. 34, No. 20, 1913-1914, 1998. Google Scholar
8. Nguyen, N. and Q. H. Liu, "The regular Fourier matrices and nonuniform fast Fourier transforms," SIAM J. Sci. Compt., Vol. 21, No. 1, 283-293, 1999. Google Scholar
9. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. AP-14, 302-307, 1966. Google Scholar
10. Kunz, K. S. and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics, CRC Press Inc., Florida, 1993.
11. Taflove, A., Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Inc., Norwood, MA, 1995.
12. Fang, J., "Time domain finite difference computation for Maxwell’s equations,", Ph.D. dissertation, University of California, Berkeley, CA, 1989. Google Scholar
13. Hadi, M. F. and M. Piket-May, "A modified FDTD (2,4) scheme for modeling electrically large structures with high phase accuracy," 12th Annu. Rev. Progress Appl. Computat. Electromagnet., Monterey, CA, March 1996. Google Scholar
14. Carpenter, M. H., D. Gottlieb, and S. Abarbanel, "The stability of numerical boundary treatments for compact higher-order finite difference schemes," Inst. Comput. Applicat. Sci. Eng., Rep. 91-71, 1991. Google Scholar
15. Young, J. L., D. Gaitonde, and J. J. S. Shang, "Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach," IEEE Trans. Antennas Propagat., Vol. 45, No. 11, 1573-1580, 1997. Google Scholar
16. Orszag, S. A., "Comparison of pseudospectral and spectral approximation," Stud. Appl. Math., Vol. 51, 253-259, 1972. Google Scholar
17. Gottlieb, D. and S. A. Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadelphia, 1977.
18. Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge University Press, New York, 1996.
19. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, 185-200, 1994. Google Scholar
20. Liu, Q. H., "The PSTD algorithm: a time-domain method requiring only two cells per wavelength," Microwave Opt. Tech. Lett., Vol. 15, No. 3, 158-165, 1997. Google Scholar
21. Liu, Q. H., "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 2, 917-926, 1999. Google Scholar
22. Liu, Q. H., "PML and PSTD algorithm for arbitrary lossy anisotropic media," IEEE Microwave Guided Wave Lett., Vol. 9, No. 2, 48-50, 1999. Google Scholar
23. Liu, Q. H. and G.-X. Fan, "A frequency-dependent PSTD algorithm for general dispersive media," IEEE Microwave Guided Wave Lett., Vol. 9, No. 2, 51-53, 1999. Google Scholar
24. Liu, Q. H. and G.-X. Fan, "Simulations of GPR in dispersive media using the PSTD algorithm," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 5, 2317-2324, 1999. Google Scholar
25. Liu, Q. H., "The PSTD algorithm for acoustic waves in inhomogeneous, absorptive media ," media,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 45, No. 4, 1044-1055, 1998. Google Scholar
26. Yang, B., D. Gottlieb, and J. S. Hesthaven, "On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering," Proc. ACES 13th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, 926-933, 1997. Google Scholar
27. Yang, B., D. Gottlieb, and J. S. Hesthaven, "Spectral simulations of electromagnetic waves scattering," J. Comp. Phys., Vol. 134, 216-230, 1997. Google Scholar
28. Sarkar, T. K., "Application of conjugate gradient method to electromagnetics and signal analysis," PIER 5, Progress in Electromagnetics Research, Elsevier, New York, 1991. Google Scholar
29. Catedra, M. F. and R. P. Torres, J. Basterrechea, and E. Gago, The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics, Boston: Artech House, 1995.
30. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Tech. Lett., Vol. 7, 599-604, 1994. Google Scholar
31. Liu, Q. H., "An FDTD algorithm with perfectly matched layers for conductive media," Micro. Opt. Tech. Lett., Vol. 14, No. 2, 134-137, 1997. Google Scholar