Vol. 29
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Analysis of Scattering and Coupling Problem of Directional Coupler for Rectangular Dielectric Waveguides
By
, Vol. 29, 295-320, 2000
Abstract
In this paper, scattering and coupling problems of the directional coupler for the dielectric rectangular waveguides are analyzed by the mode-matching method in the sense of least squares for the fundamental mode incidence. This directional coupler is composed of three parallel dielectric rectangular waveguides cores which are placed at equal space in the dielectric medium. Namely, respective cores are core regions of three respective rectangular waveguides. The central rectangular core among them has periodic groove structures of finite extent on its two surfaces which face each other and other two waveguide cores are perfect. In the central waveguide, the fundamental mode is incident from perfect part toward the periodic structure of this waveguide. The power of the incident mode to the central waveguide is coupled to other two waveguides through periodic groove structure. The coupled mode propagates in the other waveguides to the same or opposite direction for the direction of the incident mode when the Bragg condition is selected appropriately. The method of this paper results in the integral equations of Fredholm type of the second kind for the unknown spectra of scattered fields. The results of the first order approximate solutions of the integral equations are presented in this paper.
Citation
Masaji Tomita Yoshio Karasawa , "Analysis of Scattering and Coupling Problem of Directional Coupler for Rectangular Dielectric Waveguides," , Vol. 29, 295-320, 2000.
doi:10.2528/PIER99120601
http://www.jpier.org/PIER/pier.php?paper=9912061
References

1. Schlosser, W. and H. G. Unger, "Partially filled waveguides and surface waveguides of rectangular cross section," Advances in Microwaves, 319-387, Academic Press, New York, 1966.

2. Goell, J., "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x

3. Marcatili, E. A., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., Vol. 48, 2071-2102, 1969.
doi:10.1002/j.1538-7305.1969.tb01166.x

4. Akiba, S. and H. A. Haus, "Variational analysis of optical waveguide with rectangular cross section," Appl. Opt., Vol. 21, 804-808, 1982.
doi:10.1364/AO.21.000804

5. Huang, W. P., H. A. Haus, and H. N. Yoon, "Analysis of burriedchannel waveguides and couplers: scalar solution and polarization correction," J. Lightwave Technol., Vol. 8, No. 5, 642-643, 1990.
doi:10.1109/50.54469

6. Haus, H. A., W. P. Huang, and N. M. Whitaker, "Optical waveguide dispersion characteristics from the scalar wave equation," J. Lightwave Technol., Vol. 5, No. 12, 1748-1754, 1987.
doi:10.1109/JLT.1987.1075469

7. Kumar, A., K. Thyayarajan, and A. K. Ghatak, "Analysis of rectangular core dielectric waveguides: An accurate perturbation approach," Opt. Lett., Vol. 8, 63-65, 1983.
doi:10.1364/OL.8.000063

8. Tomita, M., "Thin-film waveguide with a periodic groove structure of finite extent," J. Opt. Soc. Am. A, Vol. 6, No. 9, 1455-1464, 1989.
doi:10.1364/JOSAA.6.001455

9. Tomita, M., "Analyses of grating couplers by mode-matching method in the sense of least squares," Trans. IEICE, Vol. E73, No. 4, 554-565, 1990.

10. Tomita, M., "Analysis of thin-film waveguide with a rectangular groove structure of finite extent," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 10, 1259-1282, 1991.

11. Tomita, M., "Analysis for scattering problem of directional coupler for slab waveguides," IEICE Trans. Electron., Vol. E80-C, No. 11, 1482-1490, 1997.

12. Yasuura, K. and T. Miyamoto, "Numerical analysis of an embedded optical waveguide," Radio Sci., Vol. 17, 93-98, 1982.
doi:10.1029/RS017i001p00093

13. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, New York, 1974.

14. Marcuse, D., "The coupling of degenerate modes in two parallel dielectric waveguides," B. S. T. J., Vol. 50, No. 6, 1791-1816, 1971.

15. Kapany, N. S. and J. J. Burke, Optical Waveguides, Academic Press, New York, 1972.

16. Van den Berg, P. M. and J. T. Fokkema, "The Rayleigh hypothesis in the theory of diffraction by a perturbation in a plane surface," Radio Sci., Vol. 15, 723-732, 1980.
doi:10.1029/RS015i004p00723

17. Nayfe, A., Perturbation Method, John Willy & Sons, New York, 1973.

18. Tomita, M., "Coupling efficiency of grating coupler for the gaussian light beam incidence," IEICE Trans. Electron., Vol. E79-C, Vol. 10, 1420–1429, 1996.

19. Noble, B., "Method Based on the Winer-Hopf Technique," Pergamon Press, London, 1958.