1. Schlosser, W. and H. G. Unger, "Partially filled waveguides and surface waveguides of rectangular cross section," Advances in Microwaves, 319-387, Academic Press, New York, 1966. Google Scholar
2. Goell, J., "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x Google Scholar
3. Marcatili, E. A., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., Vol. 48, 2071-2102, 1969.
doi:10.1002/j.1538-7305.1969.tb01166.x Google Scholar
4. Akiba, S. and H. A. Haus, "Variational analysis of optical waveguide with rectangular cross section," Appl. Opt., Vol. 21, 804-808, 1982.
doi:10.1364/AO.21.000804 Google Scholar
5. Huang, W. P., H. A. Haus, and H. N. Yoon, "Analysis of burriedchannel waveguides and couplers: scalar solution and polarization correction," J. Lightwave Technol., Vol. 8, No. 5, 642-643, 1990.
doi:10.1109/50.54469 Google Scholar
6. Haus, H. A., W. P. Huang, and N. M. Whitaker, "Optical waveguide dispersion characteristics from the scalar wave equation," J. Lightwave Technol., Vol. 5, No. 12, 1748-1754, 1987.
doi:10.1109/JLT.1987.1075469 Google Scholar
7. Kumar, A., K. Thyayarajan, and A. K. Ghatak, "Analysis of rectangular core dielectric waveguides: An accurate perturbation approach," Opt. Lett., Vol. 8, 63-65, 1983.
doi:10.1364/OL.8.000063 Google Scholar
8. Tomita, M., "Thin-film waveguide with a periodic groove structure of finite extent," J. Opt. Soc. Am. A, Vol. 6, No. 9, 1455-1464, 1989.
doi:10.1364/JOSAA.6.001455 Google Scholar
9. Tomita, M., "Analyses of grating couplers by mode-matching method in the sense of least squares," Trans. IEICE, Vol. E73, No. 4, 554-565, 1990. Google Scholar
10. Tomita, M., "Analysis of thin-film waveguide with a rectangular groove structure of finite extent," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 10, 1259-1282, 1991. Google Scholar
11. Tomita, M., "Analysis for scattering problem of directional coupler for slab waveguides," IEICE Trans. Electron., Vol. E80-C, No. 11, 1482-1490, 1997. Google Scholar
12. Yasuura, K. and T. Miyamoto, "Numerical analysis of an embedded optical waveguide," Radio Sci., Vol. 17, 93-98, 1982.
doi:10.1029/RS017i001p00093 Google Scholar
13. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, New York, 1974.
14. Marcuse, D., "The coupling of degenerate modes in two parallel dielectric waveguides," B. S. T. J., Vol. 50, No. 6, 1791-1816, 1971. Google Scholar
15. Kapany, N. S. and J. J. Burke, Optical Waveguides, Academic Press, New York, 1972.
16. Van den Berg, P. M. and J. T. Fokkema, "The Rayleigh hypothesis in the theory of diffraction by a perturbation in a plane surface," Radio Sci., Vol. 15, 723-732, 1980.
doi:10.1029/RS015i004p00723 Google Scholar
17. Nayfe, A., Perturbation Method, John Willy & Sons, New York, 1973.
18. Tomita, M., "Coupling efficiency of grating coupler for the gaussian light beam incidence," IEICE Trans. Electron., Vol. E79-C, Vol. 10, 1420–1429, 1996. Google Scholar
19. Noble, B., "Method Based on the Winer-Hopf Technique," Pergamon Press, London, 1958. Google Scholar