Vol. 137
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-18
Circularly Polarized Spidron Fractal Slot Antenna Arrays for Broadband Satellite Communications in Ku-Band
By
Progress In Electromagnetics Research, Vol. 137, 203-218, 2013
Abstract
In this paper, a novel circularly polarized Spidron fractal slot antenna array developed for broadband satellite communication in the Ku-band is discussed. A Spidron fractal slot configuration was utilized as a single radiating element to achieve circularly polarized radiation. The effects of altering the feeding position on the resonance behavior and the radiative characteristics were assessed. As a consequence, the design was expanded from a single element to a 2×2 subarray and further to a 4×4 array in order to enhance the bandwidth performance of the antenna when integrated with a sequential feeding network. Two prototype arrays were fabricated and tested, and measurements revealed that the 2×2 subarray has a 10-dB reflection coefficient bandwidth between 10 and 14.28 GHz, 3 dB axial ratio bands between 10.15 and 11.15 GHz and between 11.75 and 13.92 GHz, and a maximum gain of 11.4 dB at 13 GHz. The results for the 4×4 array indicated that both the 10-dB reflection coefficient and 3 dB axial ratio bandwidths cover the entire operating frequency from 10 to 15 GHz in the Ku-band. The maximum gain for the 4×4 array was 15.63 dB at 12.6 GHz.
Citation
Son Trinh-Van, Han Byul Kim, Gina Kwon, and Keum Cheol Hwang, "Circularly Polarized Spidron Fractal Slot Antenna Arrays for Broadband Satellite Communications in Ku-Band," Progress In Electromagnetics Research, Vol. 137, 203-218, 2013.
doi:10.2528/PIER13010401
References

1. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, No. 1, 79-91, 1992.        Google Scholar

2. Moradi, K. and S. Nikmehr, "A dual-band dual-polarized microstrip array antenna for base stations," Progress In Electromagnetics Research, Vol. 123, 527-541, 2012.        Google Scholar

3. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.        Google Scholar

4. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.        Google Scholar

5. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.        Google Scholar

6. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.        Google Scholar

7. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.        Google Scholar

8. Tiang, J. J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.        Google Scholar

9. Garcia-Aguilar, A., J.-M. Inclan-Alonso, L. Vigil-Herrero, J.-M. Fernandez-Gonzalez, and M. Sierra-Perez, "Low-profile dual circularly polarized antenna array for satellite communications in the X band," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2276-2284, 2012.        Google Scholar

10. Lau, P.-Y., K. K.-O. Yung, and E. K.-N. Yung, "A low-cost printed CP patch antenna for RFID smart bookshelf in library," IEEE Trans. Ind. Electron., Vol. 57, No. 5, 1583-1589, 2010.        Google Scholar

11. Wang, P., G. Wen, J. Li, Y. Huang, L. Yang, and Q. Zhang, "Wideband circularly polarized UHF RFID reader antenna with high gain and wide axial ratio beamwidths," Progress In Electromagnetics Research, Vol. 129, 365-385, 2012.        Google Scholar

12. Rao, P. N. and N. V. S. N. Sarma, "Fractal boundary circularly polarised single feed microstrip antenna," Electron. Lett., Vol. 44, No. 12, 713-714, 2008.        Google Scholar

13. Dong, Y., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4329-4333, 2011.        Google Scholar

14. Tang, X., H. Wong, Y. Long, Q. Xue, and K. L. Lau, "Circularly polarized shorted patch antenna on high permittivity substrate with wideband," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1588-1592, 2012.        Google Scholar

15. Rezaeieh, S. A. and M. Kartal, "A new triple band circularly polarized square slot antenna design with crooked T and F-shape strips for wireless applications," Progress In Electromagnetics Research, Vol. 121, 1-18, 2011.        Google Scholar

16. Sze, J.-Y. and S.-P. Pan, "Design of broadband circularly polarized square slot antenna with a compact size," Progress In Electromagnetics Research, Vol. 120, 513-533, 2011.        Google Scholar

17. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.        Google Scholar

18. Nakano, H., K. Nakayama, H. Mimaki, J. Yamauchi, and K. Hirose, "Single-arm spiral slot antenna fed by a triplate transmission line," Electron. Lett., Vol. 28, No. 22, 2088-2090, 1992.        Google Scholar

19. Hall, P. S., "Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays," Proc. Inst. Elect. Eng. Microw., Antennas Propag., Vol. 136, No. 5, 390-398, 1989.        Google Scholar

20. Evans, H., P. Gale, and A. Sambell, "Performance of 4 x 4 sequentially rotated patch antenna array using series feed," Electron. Lett., Vol. 39, No. 6, 493-494, 2003.        Google Scholar

21. Soliman, E. A., S. Brebels, E. Beyne, and G. A. E. Vandenbosch, "Sequential-rotation arrays of circularly polarized aperture antennas in the MCM-D technology," Microw. Opt. Technol. Lett., Vol. 44, No. 6, 581-585, 2005.        Google Scholar

22. Kaflash, S. and M. Kamyab, "A sequentially rotated RHCP stacked patch antenna array for INMARSAT-M land applications," Proc. 6th European Conf. Antennas Propag. (EUCAP), 1-4, Prague, Czech Republic, 2012.        Google Scholar

23. Hwang, K. C., "Broadband circularly-polarised Spidron fractal slot antenna," Electron. Lett., Vol. 45, No. 1, 3-4, 2009.        Google Scholar