1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328 Google Scholar
2. Bachynski, M., T. Johnston, and I. Shkarofsky, "Electromagnetic properties of high-temperature air," Proceedings of the IRE, Vol. 48, No. 3, 347-356, 1960.
doi:10.1109/JRPROC.1960.287607 Google Scholar
3. Leblanc, J. E. and T. Fujiwara, "Comprehensive analysis of communication with a reentry vehicle during blackout phase," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 39, No. 124, 211-221, Aug. 1996. Google Scholar
4. Starkey, R. P., "Hypersonic vehicle telemetry blackout analysis," Journal of Spacecraft and Rockets, Vol. 52, No. 2, 426-438, 2015.
doi:10.2514/1.A32051 Google Scholar
5. Hodara, H., "The use of magnetic fields in the elimination of the re-entry radio blackout," Proceedings of the IRE, Vol. 49, No. 12, 1825-1830, 1961.
doi:10.1109/JRPROC.1961.287709 Google Scholar
6. System and method for reducing plasma induced communication disruption utilizing electrophilic injectant and sharp reentry vehicle nose shaping, US Patent 7237752, 2007.
7. Brandel, D. L., W. A. Watson, and A. Weinberg, "Nasa’s advanced tracking and data relay satellite system for the years 2000 and beyond," Proceedings of the IEEE, Vol. 78, No. 7, 1141-1151, 1990.
doi:10.1109/5.56928 Google Scholar
8. Jastrow, C., S. Priebe, B. Spitschan, J.-M. Hartmann, M. Jacob, T. Kurner, T. Schrader, and T. Kleine-Ostmann, "Wireless digital data transmission at 300 GHz," Electronics Letters, Vol. 46, No. 9, 661-663, 2010.
doi:10.1049/el.2010.3509 Google Scholar
9. Li, J., Y. Pi, and X. Yang, "A conception on the terahertz communication system 257 for plasma sheath penetration," Wireless Communications and Mobile Computing, Vol. 14, No. 13, 1252-1258, 2014.
doi:10.1002/wcm.2225 Google Scholar
10. Yuan, C.-X., Z.-X. Zhou, J. W. Zhang, X.-L. Xiang, F. Yue, and H.-G. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207 Google Scholar
11. Zheng, L., Q. Zhao, S. Liu, X. Xing, and Y. Chen, "Theoretical and experimental studies of terahertz wave propagation in unmagnetized plasma," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, No. 2, 187-197, 2014.
doi:10.1007/s10762-013-0035-y Google Scholar
12. Tian, Y., Y. Han, Y. Ling, and X. Ai, "Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency," Physics of Plasmas (1994--present), Vol. 21, No. 2, 023301, 2014.
doi:10.1063/1.4864072 Google Scholar
13. Li, J.-T. and L.-X. Guo, "Research on electromagnetic scattering characteristics of reentry vehicles and blackout forecast model," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1767-1778, 2012.
doi:10.1080/09205071.2012.712754 Google Scholar
14. Kundrapu, M., J. Loverich, K. Beckwith, and P. Stoltz, "Electromagnetic wave propagation in the plasma layer of a reentry vehicle," IEEE International Conference on Plasma Sciences, 1-4, 2014. Google Scholar
15. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 853-862, 2015.
doi:10.2514/1.A33122 Google Scholar
16. Gupta, R. N., J. M. Yos, R. A. Thompson, and K.-P. Lee, "“A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 k," NASA STI/Recon Technical Report N, Tech. Rep., Aug. 1990. Google Scholar
17. Grantham, W. L., "Flight results of a 25000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance," NASA TN D-6062, Tech. Rep., Washington, D. C., Dec. 1970. Google Scholar
18. Jones, Jr., W. L. and A. E. Cross, "Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second," NASA TN D-6617, Tech. Rep., Washington, D. C., Feb. 1972. Google Scholar
19. Hu, B. J., G. Wei, and S. L. Lai, "Smm analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 27, No. 4, 1131-1136, 1999.
doi:10.1109/27.782293 Google Scholar
20. Gao, P., X. Li, Y. Liu, M. Yang, and J. Li, "Plasma sheath phase fluctuation and its effect on GPS navigation," 2012 10th International Symposium on IEEE Antennas, Propagation & EM Theory (ISAPE), 579-582, 2012.
doi:10.1109/ISAPE.2012.6408837 Google Scholar
21. Lankford, D. W., "A study of electron collision frequency in air mixtures and turbulent boundary," DTIC Document AFWL-TR-72-71, Tech. Rep., Oct. 1972. Google Scholar
22. Mehra, N., R. K. Singh, and S. C. Bera, "Mitigation of communication blackout during re-entry using static magnetic field," Progress In Electromagnetics Research B, Vol. 63, 161-172, 2015.
doi:10.2528/PIERB15070107 Google Scholar