Vol. 45
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
An Approximate Solution for Skew Incidence Diffraction by an Interior Right-Angled Anisotropic Impedance Wedge
By
, Vol. 45, 45-75, 2004
Abstract
The scattering by an anisotropic impedance interior rightangled wedge is analyzed when the principal anisotropy directions on the two faces are parallel and perpendicular to the edge. The problem is first approached by directly applying geometrical optics (GO); this allows us to identify the conditions under which the edge diffracted contribution vanishes. For those configurations not satisfying the above conditions, a perturbative technique, based on the Sommerfeld-Maliuzhinets method, is developed to determine an approximate edge diffracted field solution, valid when the normalized surface impedances on the anisotropic faces assume small values. The perturbative corrections to the field are asymptotically evaluated in the context of the Uniform Geometrical Theory of Diffraction (UTD).
Citation
Giuliano Manara, Paolo Nepa, Giuseppe Pelosi, and Andrea Vallecchi, "An Approximate Solution for Skew Incidence Diffraction by an Interior Right-Angled Anisotropic Impedance Wedge," , Vol. 45, 45-75, 2004.
doi:10.2528/PIER03052702
References

1. Kildal, P. S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas and Propagat., Vol. 44, No. 11, 1509-1520, 1996.
doi:10.1109/8.542076

2. Michelson, D. G. and E. V. Jull, "Depolarizing trihedral corner reflectors for radar navigation and remote sensing," IEEE Trans. Antennas Propagat., Vol. 43, No. 5, 513-518, 1995.
doi:10.1109/8.384196

3. Gennarelli, C.G. Pelosi, and G. Riccio, "Physical optics analysis of the field backscattered by a depolarizing trihedral corner reflector," IEE Proc.—Microwave, Vol. 145, No. 6, 213-218, 1998.

4. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE Press, Stevenage, U.K., 1995.

5. Manara, G., P. Nepa, and G. Pelosi, "High-frequency EM scattering by edges in artificially hard and soft surfaces illuminated at oblique incidence," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 790-800, 2000.
doi:10.1109/8.855499

6. Bilow, H. J., "Scattering by an infinite wedge with tensor impedance boundary conditions—a moment method/physical optics solution for the currents," IEEE Trans. Antennas Propagat., Vol. 39, No. 6, 767-773, 1991.
doi:10.1109/8.86874

7. Maliuzhinets, G. D., "Developments in our concepts of diffraction phenomena," Sov. Phys.: Usp., Vol. 69(2), No. 5, 749-758, 1959.
doi:10.1070/PU1959v002n05ABEH003170

8. Popov, A. V., "Numerical solution of the wedge diffraction problem by the transverse diffusion," Sov. Phys. Acoust., Vol. 15, No. 2, 226-233, 1969.

9. Pelosi, G., S. Selleri, and R. D. Graglia, "The parabolic equation model for the numerical analysis of the diffraction at an impedance wedge: skew incidence case," IEEE Trans. Antennas Propagat., Vol. 44, 267-268, 1996.
doi:10.1109/8.481657

10. Zhu, N. Y. and F. M. Landstofer, "Numerical study of diffraction and slope-diffraction at anisotropic impedance wedges by the method of parabolic equation: space wave," IEEE Trans. Antennas Propagat., Vol. 45, 822-828, 1997.
doi:10.1109/8.575629

11. Nefedov, Y. I. and A. T. Fialkovskiy, "Diffraction of plane electromagnetic wave at anisotropic half-plane in free space and in planar waveguide," Radio Eng. Electron. Physics, Vol. 17, No. 6, 887-896, 1972.

12. Lyalinov, M. A., "Diffraction by a wedge with anisotropic face impedances," Ann. Telecommun., Vol. 49, No. 12, 667-672, 1994.

13. Pelosi, G., G. Manara, and P. Nepa, "Diffraction by a wedge with variable-impedance walls," IEEE Trans. Antennas Propagat., Vol. 44, No. 10, 1334-1340, 1996.
doi:10.1109/8.537327

14. —— "A UTD solution for the scattering by a wedge with anisotropic impedance faces: skew incidence cases," IEEE Trans. Antennas Propagat., Vol. 46, No. 4, 579-588, 1998.
doi:10.1109/8.664124

15. Senior, T. B. A., "Skew incidence on a right-angled wedge," Radio Sci., Vol. 13, No. 4, 639-647, 1978.

16. Dybdal, R., L. Peters, Jr., and W. Peake, "Rectangular waveguides with impedances walls," IEEE Trans. Microwave Theory Tech., Vol. 19, 2-9, 1971.
doi:10.1109/TMTT.1971.1127438

17. Maliuzhinets, G. D., "Excitation, reflection and emission of surface waves from a wedge with given face impedances," Sov. Phys. Dokl., Vol. 3, 752-755, 1958.

18. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.

19. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Sov. Phys. Dokl., Vol. 3, 52-56, 1958.

20. Bowman, J. J. and T. B. A. Senior, "The wedges," Electromagnetic and Acoustic Scattering by Simple Shapes, 252-283, 1969.

21. Maliuzhinets, G. D., "The radiation of sound by the vibrating boundaries of an arbitrary wedge. Part I," Sov. Phys. Acoust., Vol. 1, 152-174, 1955.

22. Tuzhilin, A. A., "The theory of Maliuzhinets inhomogeneous functional equations," Differ. Urav., Vol. 9, 2058-2064, 1973.

23. Maliuzhinets, G. D., "Radiation of sound from the vibrating faces of an arbitrary wedge. Part II," Sov. Phys. Acoust., Vol. 1, 240-248, 1955.