1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phe- nomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
6. Li, L.-W.H.-X. Zhang, and Z.-N. Chen, "Representation of constitutive relation tensors of metamaterials: An approximation for ffb media," Progress In Electromagnetics Research Symposium, 13-16, 2003.
7. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405 Google Scholar
8. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "T-junction waveguide experiment to characterize left-handed properties of metamaterials," Journal of Applied Physics, Vol. 94, No. 6, 3712-3716, 2003.
doi:10.1063/1.1603344 Google Scholar
9. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
10. Engheta, N., "Metamaterials with negative permittivity and permeability: background, salient features, and new trends," Microwave Symposium Digest, Vol. 1, 187-190, 2003. Google Scholar
11. Cubukcu, E., K. Aydin, and E. Ozbay, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Physical Review Letters, Vol. 91, No. 20, 207401, 2003.
doi:10.1103/PhysRevLett.91.207401 Google Scholar
12. Shvets, G., "Photonic approach to making a material with a negative index of refraction," Physical Review B, Vol. 67, 035109, 2003.
doi:10.1103/PhysRevB.67.035109 Google Scholar
13. Caloz, C., A. Sanada, and T. Itoh, "Microwave applications of transmission-line based negative refractive index structures," Asia-Pacific Microwave Conference Proceedings, No. 11, 2003. Google Scholar
14. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically l-c loaded transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
15. Oliner, A. A., "A planar negative-refractive-index medium without resonant elements," Microwave Symposium Digest, Vol. 1, 191-194, 2003. Google Scholar
16. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489 Google Scholar
17. Gay-Balmaz, P. and O. J. F. Martin, "Efficient isotropic magnetic resonators," Applied Physics Letters, Vol. 81, No. 5, 939-941, 2001.
doi:10.1063/1.1496507 Google Scholar
18. Tretyakov, S. A., "Meta-materials with wideband negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 31, No. 9, 163-165, 2001.
doi:10.1002/mop.1387 Google Scholar
19. Grbic, A. and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543 Google Scholar
20. Gay-Balmaz, P. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, 2002.
doi:10.1063/1.1497452 Google Scholar
21. Kong, J. A., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972. Google Scholar
22. Collin, R. E., Field Theory of Guided Waves, Chapter 12, 1991.
23. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static lorentz theory," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565 Google Scholar
24. Collin, R. E., Field Theory of Guided Waves, The 2nd edition, 1991.
25. Song, J. M. and W. C. Chew, "Moment method solutions using parametric geometry," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 1/2, 71-83, 1995. Google Scholar
26. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Computation of generalized constitutive relations for metamaterials," Proceeding of International Symposium on Antennas and Propagation, Vol. I-02, 177-180, 2002. Google Scholar
27. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress in Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.1159/000060803 Google Scholar