1. Babic, S. I., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3217, 2000.
doi:10.1109/20.908707 Google Scholar
2. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008. Google Scholar
3. Akoun, G. and J. P. Yonnet, "3D analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554 Google Scholar
4. Yonnet, J. P., Rare-earth Iron Permanent Magnets, Ch. Magnetomechanical devices, Oxford science publications, 1996.
5. Ravaud, R., R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
6. Furlani, E. P., "Field analysis and optimization of ndfeb axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603 Google Scholar
7. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.
8. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, 1997.
doi:10.1109/20.573849 Google Scholar
9. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587 Google Scholar
10. Jian, L. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301 Google Scholar
11. Huang, S. M. and C. K. Sung, "Analytical analysis of magnetic couplings with parallelepiped magnets," Journal of Magnetism and Magnetic Materials, Vol. 239, 614-616, 2002.
doi:10.1016/S0304-8853(01)00683-7 Google Scholar
12. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, 1999.
doi:10.1109/20.799068 Google Scholar
13. Yonnet, J. P., et al. "Analytical calculation of permanent magnet couplings," IEEE Trans. Magn., Vol. 29, No. 6, 2932-2934, 1993.
doi:10.1109/20.280913 Google Scholar
14. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441 Google Scholar
15. Conway, J., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128 Google Scholar
16. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105 Google Scholar
17. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708 Google Scholar
18. Perigo, E., R. Faria, and C. Motta, "General expressions for the magnetic flux density produced by axially magnetized toroidal permanent magnets," IEEE Trans. Magn., Vol. 43, No. 10, 3826-3832, 2007.
doi:10.1109/TMAG.2007.904708 Google Scholar
19. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316 Google Scholar
20. Varga, E. and A. Beyer, "Magnetic field of a uniformly magnetized hollow cylinder," IEEE Trans. Magn., Vol. 34, No. 3, 613-618, 1998.
doi:10.1109/20.668053 Google Scholar
21. Zhilichev, Y., "Calculation of magnetic field of tubular permanent magnet assemblies in cylindrical bipolar coordinates," IEEE Trans. Magn., Vol. 43, No. 7, 3189-3195, 2007.
doi:10.1109/TMAG.2007.894636 Google Scholar
22. Selvaggi, J. P., et al. "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
doi:10.1109/TMAG.2007.902995 Google Scholar
23. Selvaggi, J. P., et al. "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653 Google Scholar
24. Selvaggi, J. P., et al. "Computation of the external magnetic field, near-field or far-field from a circular cylindrical magnetic source using toroidal functions," IEEE Trans. Magn., Vol. 43, No. 4, 1153-1156, 2007.
doi:10.1109/TMAG.2007.892275 Google Scholar
25. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by arc-shaped permanent magnets radially magnetized," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105 Google Scholar
26. Xia, Z., Z. Q. Zhu, and D. Howe, "Analytical magnetic field analysis of Halbach magnetized permanent-magnet machines," IEEE Trans. Magn., Vol. 40, No. 4, 1864-1872, 2004.
doi:10.1109/TMAG.2004.828933 Google Scholar
27. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
doi:10.1049/ip-epa:20010512 Google Scholar
28. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical Halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004 Google Scholar
29. Ravaud, R. and G. Lemarquand, "Mechanical properties of a ferrofluid seal: Three-dimensional analytical study based on the coulombian model ," Progress In Electromagnetics Research B, Vol. 13, 385-407, 2009.
doi:10.2528/PIERB09020601 Google Scholar
30. Ravaud, R. and G. Lemarquand, "Design of ironless loudspeakers with ferrofluid seals: Analytical study based on the coulombian model," Progress In Electromagnetics Research B, Vol. 14, 285-309, 2009.
doi:10.2528/PIERB09031904 Google Scholar
31. Bancel, F. and G. Lemarquand, "Three-dimensional analytical optimization of permanent magnets alternated structure," IEEE Trans. Magn., Vol. 34, No. 1, 242-247, 1998.
doi:10.1109/20.650248 Google Scholar