School of Computer and Communication Engineering
Universiti Malaysia Perlis (UniMAP)
Malaysia
HomepageSchool of Mechatronic Engineering
Universiti Malaysia Perlis (UniMAP)
Malaysia
HomepageSchool of Computer and Communication Engineering
Universiti Malaysia Perlis
Malaysia
HomepageSchool of Computer and Communication Engineering
Universiti Malaysia Perlis
Malaysia
HomepageSchool of Computer and Communication Engineering
Universiti Malaysia Perlis (UniMAP)
Malaysia
Homepage
Department of Electronic and Computer Engineering Technology
Universiti Teknikal Malaysia Melaka (UTeM)
Malaysia
HomepageDepartment of Telecommunication Engineering, Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka
Malaysia
Homepage
Faculty of Electronic Engineering & Technology
University Malaysia Perlis (UniMAP)
Malaysia
HomepageFaculty of Electrical Engineering
University Teknologi MARA (UiTM) Pulau Pinang
Malaysia
Homepage1. "Municipal solid waste in the United States: 2007 facts and figures," United States Environmental Protection Agency, EPA530-R-08-010, November 2008. Google Scholar
2. Mavroulidou, M. and J. Figueiredo, "Discarded tire rubber as concrete aggregate: A possible outlet for used tyres," Global NEST Journal, 2010.
doi:10.1016/S0921-3449(97)00041-4 Google Scholar
3. Jang, J.-W., T.-S. Yoo, J.-H. Oh, and I. Iwasaki, "Discarded tire recycling practices in the United States, Japan and Korea," Resources, Conservation and Recycling, Vol. 22, 1-14, 1998. Google Scholar
4. Joseph, P. S., "An assessment of environmental toxicity and potential contamination from artificial turf using shredded or crumb rubber," Turfgrass Producers International, 2006. Google Scholar
5. El-Gammal, A., A. K. Abdel-Gawad, Y. El-Sherbini, and A. Shalaby, "Compressive strength of concrete utilizing waste tire rubber," Journal of Emerging Trends in Engineering and Applied Sciences, Vol. 1, No. 1, 96-99, 2010.
doi:10.1016/j.wasman.2010.02.005 Google Scholar
6. Aiello, M. A. and F. Leuzzi, "Waste tyre rubberized concrete: Properties at fresh and hardened state," Journal of Waste Management, Vol. 30, 1696-1704, 2010.
doi:10.1016/j.wasman.2004.01.006 Google Scholar
7. Siddique, R. and T. R. Naik, "Properties of concrete containing scrap-tire rubber: An overview," Journal of Waste Management, Vol. 24, 563-569, 2004.
doi:10.1061/(ASCE)0899-1561(1993)5:4(478) Google Scholar
8. Eldin, N. N. and A. B. Senouci, "Rubber-tire particles as concrete aggregate," Journal of Material in Civil Engineering, Vol. 5, No. 4, 478-496, 1993. Google Scholar
9. TNRCC, , The many uses of crumb rubber, Texas Natural Resource Conservation Commission, Waste Tire Recycling Program, Office of Permitting, 1999.
10. Paul, J., , Vol. 14, 787-802, Encyclopedia of Polymer Science and Engineering, 1985.
11. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design,, John Wiley & Sons, 1998.
12. Simcik, P., "Anechoic Chamber | Condition in Use, Version 1.03," University of Adelaide, Sept. 28 2009. Google Scholar
13. Bronzoek Ltd. "Rice husk ash market study," Bronzoek Ltd., 2003.
doi:http://www.berr.gov.uk/files/file15138.pdf Google Scholar
14. Yusof, I. M., N. A. Farid, and Z. A. Zainal, "Characterisation of rice husk for cyclone gasifier," Journal of Applied Sciences, Vol. 8, No. 4, 622-628, 2008. Google Scholar
15. Ahiduzzaman, M. and A. K. M. S. Islam, "Environmental impact of rice husk briquette fuel use in Bangladesh: A case study of Mymensingh," 1st International Conference on the Developments in Renewable Energy Technology (ICDRET), 1-4, 2009. Google Scholar
16. Habeeb, G. A. and M. M. Fayyadh, "Rice husk ash concrete: The e®ect of RHA average particle size on mechanical properties and drying shrinkage," Australian Journal of Basic and Applied Sciences, Vol. 3, No. 3, 1616-1622, 2009.
doi:10.2528/PIER10041003 Google Scholar
17. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric studies of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.1109/MAP.2003.1282178 Google Scholar
18. Chung, B.-K. and H.-T. Chuah, "Design and construction of a multipurpose wideband anechoic chamber," IEEE Antennas and Propagation Magazine, Vol. 45, No. 6, 41-47, 2004. Google Scholar
19. Pues, H., Y. Arien, and F. Demming-Jansen, "Numerical evaluation of absorber reflectivity in an artificial waveguide," 20th International Zurich Symposium on Electromagnetic Compability, 144-149, 2009. Google Scholar
20. Cumming Microwave Corporatio "Technical data for C-RAM FAC: High performance convoluted absorber,", 1-2, 1997. Google Scholar
21. TDK RF Solution Inc. "Absorber for microwave and millimeter wave test chamber,", 9-10, 2008.
doi:10.2528/PIER10101203 Google Scholar
22. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks ," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011. Google Scholar
23. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Performance simulation of pyramidal and wedge microwave absorbers," 3rd Asian Modelling Symposium (AMS 2009), 649-654, 2009. Google Scholar
24. Nornikman, H., P. J. Soh, A. A. H. Azremi, F. H. Wee, and M. F. Malek, "Investigation of agricultural waste as an alternative material for microwave absorb," PIERS Online, Vol. 5, No. 6, 506-510, 2009. Google Scholar
25. Wee, F. H., P. J. Soh, A. H. M. Suhaizal, H. Nornikman, and A. A. M. Ezanuddin, "Free space Measurement technique on dielectric properties of agricultural residues at microwave frequencies," International Microwave and Optoelectronics Conference (IMOC 2009), 182-187, 2009. Google Scholar
26. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. Wee, and A. Hasnain, "Measurement of pyramidal microwave absorbers using RCS methods," The 3rd International Conference on Intelligent & Advanced Systems (ICIAS 2010), 1-5, 2010.
doi:10.1109/APACE.2007.4603966 Google Scholar
27. Hasnain, A., B. M. Ha¯z, S. Roslan, M. I. Imran, A. A. Takyuddin, A. Rusnani, and O. M. Khusairi, "Development of an economic and effective microwave absorber," 2007 Asia-Pacific Conference on Applied Electromagnetics (APACE 2007), 1-5, 2007.
doi:10.1109/15.328860 Google Scholar
28. Holloway, C. L. and E. F. Kuester, "A low-frequency model for wedge or pyramidal absorber arrays II: Computed and measured results ," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 300-306, 1994.
doi:10.2528/PIERB09122102 Google Scholar
29. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIER10071409 Google Scholar
30. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIERL09012003 Google Scholar
31. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators ," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERB08062902 Google Scholar
32. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008. Google Scholar
33. Kajehp, A. and S. A. Mirtaheri, "Analysis of pyramidal EM wave absorber by FDTD method and comparing with capacitance and homogenization method," Progress In Electromagnetic Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERB09122102 Google Scholar
34. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIER10071409 Google Scholar
35. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIERL09012003 Google Scholar
36. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERB08062902 Google Scholar
37. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERL09051204 Google Scholar
38. Leon Fernandez, G., S. Loredo, S. Zapatero, and F. Las-Heras, "Radiation pattern retrieval in non-anechoic chambers using thematrix pencil algorithm ," Progress In Electromagnetics Research Letters, Vol. 9, 119-127, 2009.
doi:10.2528/PIERL08021802 Google Scholar
39. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitanceand homogenization methods ," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERB09040902 Google Scholar
40. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIER07101702 Google Scholar
41. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modifed multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-336, 2008.
doi:10.2528/PIER08042805 Google Scholar
42. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008. Google Scholar
43. Latrach, L., N. D. Sboui, A. Gharsallah, A. Gharbi, and H. Baudrand, "A design and modelling of microwave active screen using a combination of the rectangular and periodic waveguides modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1639-1648, 2009.
doi:10.1163/156939310793699046 Google Scholar
44. Kadiroglu, F. and U. C. Hasar, "A highly accurate microwave method for permittivity determination using corrected scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2179-2189, 2010.
doi:10.1163/156939310791585972 Google Scholar
45. Wu, G., X. G. Zhang, and B. Liu, "A hybrid method for predicting the shielding e®ectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1157-1169, 2010. Google Scholar
46. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies | A review," IEEE Trans. Instrum. Meas., Vol. 30, 228-229, 1980. Google Scholar
47. Marcuvitz, N., Waveguide Handbook, 1-428, McGraw-Hill, 1951.
doi:10.1109/TMTT.1983.1131507
48. Gajda, G. B. and S. S. Stuchly, "Numerical analysis of open-ended coaxial lines," IEEE Trans. & Microwave Theory Tech., Vol. 31, 380-384, 1983.
doi:10.1109/TMTT.1982.1131022 Google Scholar
49. Stuchly, M. A., T. W. Athley, G. M. Samaras, and G. E. Taylor, "Measurement of radio frequency permittivity of biological tissue with an open-ended coaxial line: Part II | Experimental results," IEEE Trans. & Microwave Theory Tech., Vol. 30, No. 1, 87-92, 1982. Google Scholar
50. Anderson, J. M., G. B. Gajda, and S. S. Stuchly, "Analysis of an open-ended coaxial line sensor in layer dielectric," IEEE Trans. Instrum. Meas., Vol. 35, 13-18, 1986.
doi:10.1109/TMTT.1987.1133782 Google Scholar
51. Misra, D., "A quasi-static analysis of open-ended coaxial lines," IEEE Trans. & Microwave Theory Tech., Vol. 35, 925-928, 1987. Google Scholar
52. Stuchly, M. A., M. M. Brady, S. S. Stuchly, and G. Gadja, "Equivalent circuit of an open-ended coaxial line in a lossy material," IEEE Trans. Instrum. Meas., Vol. 31, 116-119, 1982.
doi:10.1109/TMTT.1984.1132810 Google Scholar
53. Bryant, J. H., "Coaxial transmission lines, related two-conductor transmission lines, connector, and components: A.U.S. historical perspective," IEEE Trans. & Microwave Theory Tech., Vol. 32, No. 9, 970-983, 1984. Google Scholar
54. You, K. Y. and Z. Abbas, Open-ended Coaxial Sensor Handbook: Formulations, Microwave Measurements and Applications, LAP Lambert Academic Publishing, 2010.
55. Inan, U. S. and A. S. Inan, Electromagnetics Waves,07458, Prentice-Hall, Inc., 2000.
56. Weisstein, E., "Eric Weisstein's World of Science,".
doi:http://scienceworld.wolfram.com/physics/, 2008 Google Scholar
57. Lim, K.-S., J.-Y. Koay, V. C. Koo, and H.-T. Ewe, "High angular resolution measurements of the monostatic backscattering coe±cient of rice fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 1-10, 2009.
doi:10.1163/156939310792149759 Google Scholar
58. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scatteringparameters ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1563-1574, 2010.
doi:10.1163/156939309788019831 Google Scholar
59. Jin, H., S. R. Dong, and D. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 809-817, 2009.
doi:10.1163/156939310791036287 Google Scholar
60. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental investigation on °anged parallel-plate dielectric waveguide probe for detection of conductive nclusions in lossy dielectric medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 681-693, 2010.
doi:10.2528/PIER10101208 Google Scholar
61. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER09061401 Google Scholar
62. Hasar, U. C., O. Simsek, M. K. Zateroglu, and A. E. Ekinci, "A microwave method for unique and non-ambiguous permittivity determination of liquid materials from measured uncalibrated scattering parameters," Progress In Electromagnetics Research, Vol. 95, 73-85, 2009.
doi:10.2528/PIER09041405 Google Scholar
63. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09020801 Google Scholar
64. Hasar, U. C. and O. Simsek, "On the application of microwave calibration-independent measurements for noninvasive thickness evaluation of medium- or low-loss solid materials," Progress In Electromagnetics Research, Vol. 91, 377-392, 2009.
doi:10.2528/PIER09091402 Google Scholar
65. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009. Google Scholar
66. Lesurf, J., ``Warp factor !", University of St. Andrews, 2006.
doi:10.1109/22.390198
67. Neelakanta, P. S. and J. C. Park, "Microwave absorption by conductor loaded dielectric," IEEE Transactions on Microwave Theory and Technique, Vol. 43, No. 6, 1381-1383, 1995.
doi:10.2528/PIER09030904 Google Scholar
68. Li, E., Z.-P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09011702 Google Scholar
69. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09071409 Google Scholar
70. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09062501 Google Scholar
71. Hasar, U. C., "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/PIERB10090103 Google Scholar
72. Asi, M. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101-113, 2010.
doi:10.2528/PIERB09041706 Google Scholar
73. Remillard, S. K., A. Hardaway, B. Mork, J. Gilliland, and J. Gibbs, "Using a re-entrant microwave resonator to measure and model the dielectric breakdown electric field of gases," Progress In Electromagnetics Research B, Vol. 15, 175-195, 2009.
doi:10.2528/PIERL09021605 Google Scholar
74. Helhel, S., B. Colak, and Ş. ÄOzen, "Measurement of dielectric constant of thin leaves by moisture content at 4mm band," Progress In Electromagnetics Research Letters, Vol. 7, 183-191, 2009.
doi:10.2528/PIERL08072403 Google Scholar
75. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.
doi:10.1109/TMTT.2010.2040406 Google Scholar
76. Simpkin, R., "Derivation of lichtenecker's logarithmic mixture formula from Maxwell's equations," IEEE Trans. on MTT, Vol. 58, No. 3, Mar. 2010. Google Scholar
77. Agilent Technologies Inc. Agilent basics of measuring the dielectric properties of materials, 1-32.
78. Agilent Techonlogies Inc. Agilent 85070E, dielectric Probe Kit, 200MHz to 50 GHz, 1-12, 2008.
doi:10.1002/9780470822746
79. Gupta, M. and W. W. L. Eugene, Microwaves and Metals, John Wiley & Sons, 2007.
doi:10.1109/MAP.2008.4562276
80. Fischer, B. and I. Lahaie, "Recent microwave absorber wall-reflectivity measurement methods," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 140-147, 2008. Google Scholar