1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
3. Baena, J. D., J. Bonache, F. Martin, et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines ," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
4. Montero-de-Paz, J., E. Ugarte-Munoz, F. J. Hettaiz-Martinez, V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Multifrequency self-diplexed single patch antennas loaded with split ring resonators," Progress In Electromagnetics Research, Vol. 113, 47-66, 2011. Google Scholar
5. Zhang, F., Q. Zhao, J. Sun, J. Zhou, and D. Lippens, "Coupling effect of split ring resonator and its mirror image," Progress In Electromagnetics Research, Vol. 124, 233-247, 2012.
doi:10.2528/PIER11121808 Google Scholar
6. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011. Google Scholar
7. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (Ec-Srr) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
doi:10.2528/PIER12030601 Google Scholar
8. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011. Google Scholar
9. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307 Google Scholar
10. Zhou, L., S. B. Liu, X. K. Kong, and Y. N. Guo, "Novel cross-coupled filter design using improved split-ring resonators based on stepped impedance resonator," Microw. and Optical Tech. Lett., Vol. 53, No. 9, 1976-1980, 2011.
doi:10.1002/mop.26169 Google Scholar
11. Melik, R., E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, and H. V. Demir, "Nested metamaterials for wireless strain sensing," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 2, 450-458, 2010.
doi:10.1109/JSTQE.2009.2033391 Google Scholar
12. He, X. J., L. Qiu, Y. Wang, Z. X. Geng, J. M. Wang, and T. L. Gui, "A compact thin-film sensor based on nested split-ring-resonator (SRR) metamaterials for microwave applications," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 32, 902-913, 2011.
doi:10.1007/s10762-011-9807-4 Google Scholar
13. Zhu, J. W. and Z. H. Feng, "Microstrip interdigital hairpin resonator with an optimal physical length," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 672-674, 2006.
doi:10.1109/LMWC.2006.885622 Google Scholar
14. Tsai, L. C., "Miniature bandpass filters with stepped-impedance resonators," Microw. and Optical Tech. Lett., Vol. 54, No. 5, 1167-1170, 2012.
doi:10.1002/mop.26758 Google Scholar