Vol. 143
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-29
Propagation of a Lorentz-Gauss Vortex Beam in a Turbulent Atmosphere
By
Progress In Electromagnetics Research, Vol. 143, 143-163, 2013
Abstract
The propagation properties of a Lorentz-Gauss vortex beam in a turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, the Hermite-Gaussian expansion of a Lorentz function, etc., analytical expressions of the average intensity, effective beam size, and kurtosis parameter of a Lorentz-Gauss vortex beam are derived in the turbulent atmosphere. The spreading properties of a Lorentz-Gauss vortex beam in the turbulent atmosphere are numerically calculated and analyzed. The influences of the beam parameters on the propagation of a Lorentz-Gauss vortex beam in the turbulent atmosphere are examined in details. Upon propagation in the turbulent atmosphere, the vale in the normalized intensity distribution of a Lorentz-Gauss vortex beam gradually rises. The rising speed of the vale is opposite to the spreading of the beam spot. When the propagation distance reaches to a certain value, the Lorentz-Gauss vortex beam in the turbulent atmosphere becomes a flattened beam spot. When the propagation distance is large enough, the beam spot of the Lorentz-Gauss vortex beam tends to be a Gaussian-like distribution. This research is beneficial to optical communications and remote sensing that are involved in the single mode diode laser devices.
Citation
Guoquan Zhou, and Guoyun Ru, "Propagation of a Lorentz-Gauss Vortex Beam in a Turbulent Atmosphere," Progress In Electromagnetics Research, Vol. 143, 143-163, 2013.
doi:10.2528/PIER13082703
References

1. Naqwi, A. and F. Durst, "Focus of diode laser beams: A simple mathematical model," Appl. Opt., Vol. 29, 1780-1785, 1990.
doi:10.1364/AO.29.001780

2. Yang, J., T. Chen, G. Ding, and X. Yuan, "Focusing of diode laser beams: A partially coherent Lorentz model," Proc. SPIE , Vol. 6824, 68240A, 2008.
doi:10.1117/12.757962

3. Torre, A., W. A. B. Evans, O. E. Gawhary, and S. Severini, "Relativistic Hermite polynomials and Lorentz beams," J. Opt. A: Pure Appl. Opt., Vol. 10, 115007, 2008.
doi:10.1088/1464-4258/10/11/115007

4. Gao, X., D. Zhang, M. Ting, F. Rui, Q. Zhan, and S. Zhuang, "Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront," Optik, Vol. 124, 2079-2084, 2013.
doi:10.1016/j.ijleo.2012.06.061

5. Gawhary, O. E. and S. Severini, "Lorentz beams as a basis for a new class of rectangular symmetric optical fields," Opt. Commun., Vol. 269, 274-284, 2007.
doi:10.1016/j.optcom.2006.08.007

6. Chen, R. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in Kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
doi:10.2528/PIER11081712

7. Zhou, G., "Beam propagation factors of a Lorentz-Gauss beam," Appl. Phys. B, Vol. 96, 149-153, 2009.
doi:10.1007/s00340-009-3460-9

8. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B, Vol. 107, 183-193, 2012.
doi:10.1007/s00340-012-4889-9

9. Gawhary, O. E. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007

10. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Opt., Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079

11. Du, W., C. Zhao, and Y. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Lasers in Eng., Vol. 49, 25-31, 2011.
doi:10.1016/j.optlaseng.2010.09.004

12. Sun, Q., A. Li, K. Zhou, Z. Liu, G. Fang, and S. Liu, "Virtual source for rotational symmetric Lorentz-Gaussian beam," Chin. Opt. Lett., Vol. 10, 062601, 2012.
doi:10.3788/COL201210.062601

13. Jiang, Y., K. Huang, and X. Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express , Vol. 19, 9708-9713, 2011.
doi:10.1364/OE.19.009708

14. Eyyubo·glu, H. T., "Partially coherent Lorentz-Gaussian beam and its scintillations," Appl. Phys. B, Vol. 103, 755-762, 2011.
doi:10.1007/s00340-011-4414-6

15. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Phy. Rev., Vol. 50, 115-125, 1936.
doi:10.1103/PhysRev.50.115

16. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phy. Rev. A, Vol. 45, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185

17. He, H., M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett., Vol. 75, 826-829, 1995.
doi:10.1103/PhysRevLett.75.826

18. Curtis, J. E., B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun., Vol. 207, 169-175, 2002.
doi:10.1016/S0030-4018(02)01524-9

19. Gibson, G., J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express, Vol. 12, 5448-5456, 2004.
doi:10.1364/OPEX.12.005448

20. Lee, W. M., X.-C. Yuan, and W. C. Cheong, "Optical vortex beam shaping by use of highly e±cient irregular spiral phase plates for optical micromanipulation," Opt. Lett., Vol. 29, 1796-1798, 2004.
doi:10.1364/OL.29.001796

21. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, 153901, 2005.
doi:10.1103/PhysRevLett.94.153901

22. Li, C. F., "Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization," Phys. Rev. A, Vol. 80, 063814, 2009.

23. Bliokh, K. Y., M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, "Angular momentum and spin-orbit interaction of nonparaxial light in free space," Phys. Rev. A, Vol. 82, 063825, 2010.

24. Ni, Y. and G. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2

25. Rui, F., D. Zhang, M. Ting, X. Gao, and S. Zhuang, "Focusing of linearly polarize Loretnz-Gauss beam with bone optical vortex," Optik, Vol. 124, 2969-2973, 2973.