1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3975, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Pendry, J. B., "Electromagnetic materials enter the negative age," Physics World, Vol. 14, No. 9, 47-51, 2001. Google Scholar
3. Yang, J. J., M. Huangand, and J. Sun, "Double negative metamaterial sensor based on micro ring resonator," IEEE Sensor, Vol. 11, 2254-2259, 2011.
doi:10.1109/JSEN.2011.2132798 Google Scholar
4. Yang, J., M. Huang, Y. Lan, and Y. Li, "Microwave sensor based on a single stereo-complementary asymmetric split resonator," International Journal of RF and Microwave Computer-aided Engineering, Vol. 22, 545-551, 2012.
doi:10.1002/mmce.20644 Google Scholar
5. Schueler, M., C. Mandel, M. Puentesand, and R. Jakoby, "Metamaterial inspired microwave sensors," IEEE Microwave Magazine, Vol. 13, 57-68, 2012.
doi:10.1109/MMM.2011.2181448 Google Scholar
6. Melik, R., E. Unal, N. K. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitzand, and H. V. Demir, "Nested metamaterials for wireless strain sensing," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, 450-458, 2010.
doi:10.1109/JSTQE.2009.2033391 Google Scholar
7. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501 Google Scholar
8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 263-272, 2013. Google Scholar
9. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," Journal of Optics, Vol. 14, 105103, 2012.
doi:10.1088/2040-8978/14/10/105103 Google Scholar
10. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: Polarization and EM properties," Journal of Optics, Vol. 12, 075102, 2010.
doi:10.1088/2040-8978/12/7/075102 Google Scholar
11. Dincer, F., C. Sabah, M. Karaaslan, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601 Google Scholar
12. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multilayer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110 Google Scholar
13. Ekmekci, E., R. D. Averitt, and G. T. Sayan, "Effects of substrate parameters on the resonance frequency of double-sided SRR structures under two different excitations," PIERS Proceedings, 538-540, Cambridge, USA, Jul. 5-8, 2010. Google Scholar
14. Kriegler, C., "Bianisotropic photonic metamaterials," IEEE Journal of Selectedtopics in Quantum Electronics, 1-15, 2010. Google Scholar
15. Wang, B., "Chiral metamaterials: Simulations and experiments," Journal of Optics A, Pure and Applied Optics, Vol. 11, No. 11, 114003-114013, 2009.
doi:10.1088/1464-4258/11/11/114003 Google Scholar
16. Tretyakov, S., A. Sihvolaand, and L. Jylha, "Backward-wave regime and negative refraction in chiral composites," Photonics and Nanostructures Fundamentals and Applications, Vol. 2, No. 2-3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008 Google Scholar
17. Chen, T., S. Liand, and H. Suun, "Metamaterials application in sensing," Sensors, Vol. 12, 2742-2765, 2012.
doi:10.3390/s120302742 Google Scholar
18. Soukoulis, C. M., S. Lindenand, and M. Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, No. 5808, 47-49, 2007.
doi:10.1126/science.1136481 Google Scholar
19. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys., Vol. 7, 168-182, 2005.
doi:10.1088/1367-2630/7/1/168 Google Scholar
20. Ekmekci, E. and G. T. Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A: Materials Science & Processing, Vol. 110, No. 1, 189-197, 2013.
doi:10.1007/s00339-012-7113-1 Google Scholar
21. Hendry, E., T. Carpy, J. Johnston, M. Popland, R. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nature Nanoletters, Vol. 5, 783-787, 2010.
doi:10.1038/nnano.2010.209 Google Scholar
22. Meng, F., Q. Wu, D. Erni, K.Wu, and J. C. Lee, "Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3013-3022, 2012.
doi:10.1109/TMTT.2012.2209455 Google Scholar
23. Willets, K. A. and R. P. van Duyne, "Localised surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem., Vol. 58, 267-297, 2007.
doi:10.1146/annurev.physchem.58.032806.104607 Google Scholar
24. Anker, J. N., W. Paige, O. Lyandres, C. Shah, J. Zhao, and R. V. Duyne, "Bio sensing with plasmonic nanosensors," Nature Materials,, Vol. 7, 442-453, Jun. 2008.
doi:10.1038/nmat2162 Google Scholar
25. Link, S. and M. A. El Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B., Vol. 103, 8410-8426, 1999.
doi:10.1021/jp9917648 Google Scholar
26. Haes, A. J. and R. P. Duyne, "A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localised surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc., Vol. 124, 10596-10604, 2002.
doi:10.1021/ja020393x Google Scholar
27. Jung, L. S., C. T. Campell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed film," Langmuir, Vol. 14, 5636-5648, 1998.
doi:10.1021/la971228b Google Scholar
28. Barbillon, G., "Plasmonic nanostructures prepared by soft UV nanoimprint lithography and their application in biological sensing," Micromachines, Vol. 3, 21-27, 2012.
doi:10.3390/mi3010021 Google Scholar
29. Withayachumnankula, W., K. Jaruwongrungseeb, A. Tuantranontc, C. Fumeauxa, and D. Abbotta, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, 233-237, 2013.
doi:10.1016/j.sna.2012.10.027 Google Scholar
30. Vishvakarma, R. B. and C. S. Raid, "Measurement of complex dielectric constant of sand and dust particles as a function of moisture content," European Microwave Conference, Vol. 23, 568-570, 1993. Google Scholar
31. Zheng, Y., G. Meyer, M. Lanagan, A. Dinesh, and C. Jiping, "A study of watersorption effects on the microwave dielectric properties," Materials Letters, Vol. 95, 157-159, 2013.
doi:10.1016/j.matlet.2012.12.112 Google Scholar
32. Yang, J., M. Huang, H. Tang, J. Zeng, and L. Dong, "Metamaterial sensors," International Journal of Antennas and Propagation, Vol. 2013, 637270, 2013. Google Scholar
33. Factorova, D., "Temperature dependence of biological tissues complex permittivity at microwave frequencies," Advances in Electrical and Electronic Engineering, Vol. 7, 354-357, 2008. Google Scholar
34. Baker, J., E. Vanzura, and W. Kissik, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
35. Faktorova, D., "Microwave nondestructive testing of dielectric materials," Advances in Electrical and Electronic Engineering, Vol. 5, 230-233, 2006. Google Scholar