Vol. 149
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-11-04
Metasurface Synthesis for Time-Harmonic Waves: Exact Spectral and Spatial Methods (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 149, 205-216, 2014
Abstract
Two exact approaches to synthesize metasurfaces for time-harmonic waves are discussed. The first approach is a spectral approach based on wave momentum conservation. Here, the spectral approach is applied to scalar and paraxial wave transformations. This approach effectively allows the arbitrary translation of the transformation plane parallel to the metasurface. The second approach is a direct-space approach based on the extraction of the susceptibility tensors of the metasurface elements. This approach is applied to vectorial field transformation and can be used for single or multiple transformations. An example of wave transformation by a metasurface is illustrated for each of the two approaches.
Citation
Mohamed A. Salem, Karim Achouri, and Christophe Caloz, "Metasurface Synthesis for Time-Harmonic Waves: Exact Spectral and Spatial Methods (Invited Paper)," Progress In Electromagnetics Research, Vol. 149, 205-216, 2014.
doi:10.2528/PIER14100505
References

1. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714

2. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 853-865, Nov. 2005.
doi:10.1109/TEMC.2005.853719

3. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

4. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, May 2013.
doi:10.1103/PhysRevLett.110.197401

5. Niemi, T., A. O. Karilainen, and S. A. Tretyakov, "Synthesis of Polarization Transformers," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3102-3111, Jun. 2013.
doi:10.1109/TAP.2013.2252136

6. Ra’di, Y., V. S. Asadchy, and S. A. Tretyakov, "Total absorption of electromagnetic waves in ultimately thin layers," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4606-4614, Sept. 2013.
doi:10.1109/TAP.2013.2271892

7. Shi, H., A. Zhang, S. Zheng, J. Li, and Y. Jiang, "Dual-band polarization angle independent 90o polarization rotator using twisted electric-field-coupled resonators," Appl. Phys. Lett., Vol. 104, No. 3, 2014.
doi:10.1063/1.4863227

8. Kodera, T., D. L. Sounas, and C. Caloz, "Artificial faraday rotation using a ring metamaterial structure without static magnetic field," Appl. Phys. Lett., Vol. 99, No. 3, 2011.
doi:10.1063/1.3615688

9. Sounas, D. L., T. Kodera, and C. Caloz, "Electromagnetic modeling of a magnet-less non-reciprocal gyrotropic metasurface," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 221-231, Jan. 2013.
doi:10.1109/TAP.2012.2214997

10. Salem, M. A. and C. Caloz, "Manipulating light at distance by a metasurface using momentum transformation," Opt. Express, Vol. 22, No. 12, 14 530-14 543, Jun. 2014.
doi:10.1364/OE.22.014530

11. Achouri, K., M. A. Salem, C. Caloz, and , "General metasurface synthesis based on susceptibility tensors,", arXiv:1408.0273, Aug. 2014.

12. Goodman, J. W., Introduction to Fourier Optics, 2nd Edition, McGraw-Hill, New York, NY, 1996.

13. Kotlyar, V. V. and A. A. Kovalev, "Family of hypergeometric laser beams," J. Opt. Soc. Am. A, Vol. 25, No. 1, 262-270, Jan. 2008.
doi:10.1364/JOSAA.25.000262

14. Idemen, M. M., Discontinuities in the Electromagnetic Field, John Wiley & Sons, Hoboken, NJ, 2011.
doi:10.1002/9781118057926

15. Kuester, E. F., M. A.Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2641-2651, Oct. 2003.
doi:10.1109/TAP.2003.817560

16. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, NY, 1986.

17. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, MA, 1994.

18. Grbic, A., L. Jiang, and R. Merlin, "Near-field plates: Subdiffraction focusing with patterned surfaces," Science, Vol. 320, No. 5875, 511-513, 2008.
doi:10.1126/science.1154753

19. Markley, L. and G. V. Eleftheriades, "Meta-screens and near-field antenna-arrays: A new perspective on subwavelength focusing and imaging," Metamaterials, Vol. 5, No. 2-3, 97-106, 2011.
doi:10.1016/j.metmat.2011.03.004

20. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.

21. Strichartz, R. S., A Guide to Distribution Theory and Fourier Transforms, World Scientific, River Edge, NJ, 2003.
doi:10.1142/5314