Vol. 160

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Broadband Generation of Orbital Angular Momentum Carrying Beams in RF Regimes

By Fuchun Mao, Ming Huang, Tinghua Li, Jialin Zhang, and Chengfu Yang
Progress In Electromagnetics Research, Vol. 160, 19-27, 2017


We propose a novel approach for the broadband generation of orbital angular momentum (OAM) carrying beams based on the Archimedean spiral. The mechanism behind the antenna is theoretically analyzed and further validated by numerical simulation and physical measurement. The results show that the spiral-based antenna is able to reliably generate the OAM carrying beams in an ultra-wide frequency band. Of particular interest is the fact that the mode number of radiated beams is reconfigurable with a change in operating frequency. Prototypes of a single-arm spiral antenna (SASA), a multi-arm spiral antenna (MASA), and a compact multi-arm spiral antenna (CMASA) are investigated and demonstrated to support our arguments. The proposed approach provides an effective and competitive way to generate OAM carrying beams in radio and microwave bands, which may have potential in wireless communication applications due to its characteristics of simplicity, broadband capacity and reconfiguration opportunities.


Fuchun Mao, Ming Huang, Tinghua Li, Jialin Zhang, and Chengfu Yang, "Broadband Generation of Orbital Angular Momentum Carrying Beams in RF Regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.


    1. Krenn, M., M. Malik, M. Erhard, and A. Zeilinger, "Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes," Phil. Trans. R. Soc. A, Vol. 375, 20150442, 2017.

    2. McMorran, B. J., A. Agrawal, P. A. Ercius, V. Grillo, A. A. Herzing, T. R. Harvey, M. Linck, and J. S. Pierce, "Origins and demonstrations of electrons with orbital angular momentum," Phil. Trans. R. Soc. A, Vol. 375, 20150434, 2017.

    3. Shiloh, R., Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, "Unveiling the orbital angular momentum and acceleration of electron beams," Phys. Rev. Lett., Vol. 114, No. 9, 096102, 2015.

    4. Ritsch-Marte, M., "Orbital angular momentum light in microscopy," Phil. Trans. R. Soc. A, Vol. 375, 20150437, 2017.

    5. Fischer, P., "X-ray imaging of magnetic structures," IEEE Transactions on Magnetics, Vol. 51, No. 2, 1-31, 2015.

    6. Clark, C. W., R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, "Controlling neutron orbital angular momentum," Nature, Vol. 525, No. 7570, 504-506, 2015.

    7. Uribe-Patarroyo, N., A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, "Object identification using correlated orbital angular momentum states," Phys. Rev. Lett., Vol. 110, No. 4, 043601, 2013.

    8. Padgett, M. and R. Bowman, "Tweezers with a twist," Nat. Photonics, Vol. 5, No. 6, 343-348, 2011.

    9. Yuan, Y., T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, "Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams," Scientific Reports, Vol. 7, 2017.

    10. Ren, Y., L. Li, G. Xie, Y. Yan, Y. Cao, H. Huang, N. Ahmed, Z. Zhao, P. Liao, C. Zhang, G. Caire, A. F. Molisch, M. Tur, and A. E. Willner, "Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing," IEEE Transactions on Wireless Communications, 2017.

    11. Yu, S., "Potentials and challenges of using orbital angular momentum communications in optical interconnects," Optics Express, Vol. 23, No. 3, 3075-3087, 2015.

    12. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.

    13. Devlin, R. C., A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, "Spin-to-orbital angular momentum conversion in dielectric metasurfaces," Optics Express, Vol. 25, No. 1, 377-393, 2017.

    14. Cai, X., J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, "Integrated compact optical vortex beam emitters," Science, Vol. 338, No. 6105, 363-366, 2012.

    15. Zhang, C., L. Deng, W. J. Hong, W. X. Jiang, J. F. Zhu, M. Zhou, L. Wang, S. F. Li, and B. Peng, "Three-dimensional simultaneous arbitrary-way orbital angular momentum generator based on transformation optics," Scientific Reports, Vol. 6, 2016.

    16. Lei, T., M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Li Z., C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, "Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings," Light: Science & Applications, Vol. 4, e257, 2015.

    17. Li, S. and Z. Wang, "Generation of optical vortex based on computer-generated holographic gratings by photolithography," Appl. Phys. Lett., Vol. 103, No. 14, 141110, 2013.

    18. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, No. 20, 200404, 2014.

    19. Niederriter, R. D., M. E. Siemens, and J. T. Gopinath, "Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber," Optics Letters, Vol. 41, No. 14, 3213-3216, 2016.

    20. Gambini, F., P. Velha, C. J. Oton, and S. Faralli, "Orbital angular momentum generation with ultra-compact bragg-assisted silicon microrings," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2355-2358, 2016.

    21. Thide, B., H. Then, J. Sj¨oholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the lowfrequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701, 2007.

    22. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio — A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.

    23. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.

    24. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.

    25. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.

    26. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 12, 121903, 2016.

    27. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.

    28. Chen, J. J., Q. N. Lu, F. F. Dong, J. J. Yang, and M. Huang, "Wireless OAM transmission system based on elliptical microstrip patch antenna," Optics Express, Vol. 24, No. 11, 11531-11538, 2016.

    29. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, 10148, 2015.

    30. Yu, S., L. Li, G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.

    31. Kaiser, J. A., "The Archimedean two-wire spiral antenna," IRE Transactions on Antennas & Propagation, Vol. 8, No. 3, 312-323, 1960.

    32. Nakano, H., R. Satake, and J. Yamauchi, "Extremely low-profile, single-arm, wideband spiral antenna radiating a circularly polarized wave," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1511-1520, 2010.

    33. Mcfadden, M. and W. R. Scott, "Analysis of the equiangular spiral antenna on a dielectric substrate," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3163-3171, 2007.