Vol. 162

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Exploiting the Topological Robustness of Composite Vortices in Radiation Systems

By Mirko Barbuto, Mohammad-Ali Miri, Andrea Alu, Filiberto Bilotti, and Alessandro Toscano
Progress In Electromagnetics Research, Vol. 162, 39-50, 2018


Recent years have witnessed an increasing interest in topological states of condensed matter systems, whose concepts have been also extended to wave phenomena. Especially at optical frequencies, several studies have reported applications of structured light exploiting topological transitions and exceptional points or lines, over which a field property of choice is undefined. Interesting properties of light beams with phase singularities (such as the creation, annihilation or motion of these topological points) have been observed in composite vortices


Mirko Barbuto, Mohammad-Ali Miri, Andrea Alu, Filiberto Bilotti, and Alessandro Toscano, "Exploiting the Topological Robustness of Composite Vortices in Radiation Systems," Progress In Electromagnetics Research, Vol. 162, 39-50, 2018.


    1. Rubinsztein-Dunlop, H., et al., "Roadmap on structured light," J. Opt., Vol. 19, 013001, 2017.

    2. Nye, J. F. and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. Lond. A, Vol. 336, 165-190, 1974.

    3. Soskin, M. S., V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A, Vol. 56, 4064-4075, 1997.

    4. Grier, D. G., "A revolution in optical manipulation," Nat., Vol. 424, 810-816, 2003.

    5. Lee, J. H., G. Foo, E. G. Johnson, and G. A. Swartzlander, "Experimental verification of an optical vortex coronagraph," Phys. Rev. Lett., Vol. 97, 053901, 2006.

    6. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nat., Vol. 412, 313-316, 2001.

    7. Chen, R.-P., Z. Chen, Y. Gao, J. Ding, and S. He, "Flexible manipulation of the polarization conversions in a structured vector field in free space," Laser Photonics Rev., Vol. 11, No. 6, 1700165, 2017.

    8. Chen, R.-P., K.-H. Chew, C.-Q. Dai, and G. Zhou, "Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization," Phys. Rev. A, Vol. 96, No. 5, 053862, 2017.

    9. Chen, R.-P. and C.-Q. Dai, "Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation," Nonlinear Dyn, Vol. 88, 2807-2816, 2017.

    10. Chen, R.-P. and C.-Q. Dai, "Vortex solitons of the (3 + 1)-dimensional spatially modulated cubicquintic nonlinear Schr¨odinger equation with the transverse modulation," Nonlinear Dyn, Vol. 90, 1563-1570, 2017.

    11. Thide, B., H. Then, J. SjAoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the lowfrequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701-1-087701-4, Aug. 2007.

    12. Edfos, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antennas Propagat., Vol. 60, 1126-1131, 2012.

    13. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, IEEE Trans. Antennas Propagat., Vol. 58, 565-572, 2010.

    14. Tennant, A. and B. Allen, "Generation of OAM radio waves using circular time-switched array antenna," Electron. Lett., Vol. 48, 1365-1366, 2012.

    15. Tamburini, F., E. Mari, A. Sponselli, F. Romanato, B. Thid´e, A. Bianchini, L. Palmieri, and C. G. Someda, "Encoding many channels in the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, 033001, 2012.

    16. Tamburini, F., E. Mari, B. Thide, C. Barbieri, and F. Romanato, "Experimental verification of photon angular momentum and vorticity with radio techniques," Appl. Phys. Lett., Vol. 99, 204102-1-204102-3, 2011.

    17. Yu, S., G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.

    18. Zhang, Z., S. Xiao, Y. Li, and B. Z. Wang, "A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 521-524, 2017.

    19. Hui, X., S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 966-969, 2015.

    20. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.

    21. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.

    22. Barbuto, M., F. Bilotti, and A. Toscano, "Patch antenna generating structured fields with a Mobius polarization state," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1345-1348, 2017.

    23. Bauer, T., P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, "Observation of optical polarization Mobius strips," Science, Vol. 347, 964-966, 2015.

    24. Galvez, E. J., N. Smiley, and N. Fernandes, "Composite optical vortices formed by collinear Laguerre-Gauss beams," Proceedings of SPIE 6131, Nanomanipulation with Light II, 613105, Feb. 9, 2006.

    25. Maleev, I. D. and G. A. Swartzlander, "Composite optical vortices," J. Opt. Soc. Am. B, Vol. 20, 1169-1176, 2003.

    26. De Angelis, L., F. Alpeggiani, A. Di Falco, and L. Kuipers, "Persistence and fidelity of phase singularities in optical random waves," Frontiers in Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.82, 2016.

    27. Dennis, M. R., R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, "Isolated optical vortex knots," Nature Physics, Vol. 6, 118-121, 2010.

    28. Flossmann, F., K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Polarization singularities in 2D and 3D speckle fields," Phys. Rev. Lett., Vol. 100, 203902, 2008.

    29. Cardano, F., E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, "Generation and dynamics of optical beams with polarization singularities," Opt. Express, Vol. 21, 8815-8820, 2013.

    30. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Trans. Antennas Propagat., Vol. 27, 660-664, 1979.

    31. Huang, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 32, 991-994, 1984.

    32. Coleman, H. and B. Wright, "A compact flush-mounting antenna with direction finding and steerable cardioid pattern capability," IEEE Trans. Antennas Propagat., Vol. 32, No. 4, 412-414, Apr. 1984.

    33. Shafai, L., "Properties of microstrip phased arrays with self-scanning elements," Digest on Antennas and Propagation Society International Symposium, Vol. 2, 986-988, San Jose, CA, USA, 1989.

    34. Lin, W., H. Wong, and R. W. Ziolkowski, "Wideband pattern-reconfigurable antenna with switchable broadside and conical beams," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2638-2641, 2017.

    35. Labadie, N. R., S. K. Sharma, and G. M. Rebeiz, "A circularly polarized multiple radiating mode microstrip antenna for satellite receive applications," IEEE Trans. Antennas Propagat., Vol. 62, No. 7, 3490-3500, Jul. 2014.