Vol. 162
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-05-28
Exploiting the Topological Robustness of Composite Vortices in Radiation Systems
By
Progress In Electromagnetics Research, Vol. 162, 39-50, 2018
Abstract
Recent years have witnessed an increasing interest in topological states of condensed matter systems, whose concepts have been also extended to wave phenomena. Especially at optical frequencies, several studies have reported applications of structured light exploiting topological transitions and exceptional points or lines, over which a field property of choice is undefined. Interesting properties of light beams with phase singularities (such as the creation, annihilation or motion of these topological points) have been observed in composite vortices
Citation
Mirko Barbuto, Mohammad-Ali Miri, Andrea Alu, Filiberto Bilotti, and Alessandro Toscano, "Exploiting the Topological Robustness of Composite Vortices in Radiation Systems," Progress In Electromagnetics Research, Vol. 162, 39-50, 2018.
doi:10.2528/PIER18033006
References

1. Rubinsztein-Dunlop, H., et al., "Roadmap on structured light," J. Opt., Vol. 19, 013001, 2017.
doi:10.1088/2040-8978/19/1/013001

2. Nye, J. F. and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. Lond. A, Vol. 336, 165-190, 1974.
doi:10.1098/rspa.1974.0012

3. Soskin, M. S., V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A, Vol. 56, 4064-4075, 1997.
doi:10.1103/PhysRevA.56.4064

4. Grier, D. G., "A revolution in optical manipulation," Nat., Vol. 424, 810-816, 2003.
doi:10.1038/nature01935

5. Lee, J. H., G. Foo, E. G. Johnson, and G. A. Swartzlander, "Experimental verification of an optical vortex coronagraph," Phys. Rev. Lett., Vol. 97, 053901, 2006.
doi:10.1103/PhysRevLett.97.053901

6. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nat., Vol. 412, 313-316, 2001.
doi:10.1038/35085529

7. Chen, R.-P., Z. Chen, Y. Gao, J. Ding, and S. He, "Flexible manipulation of the polarization conversions in a structured vector field in free space," Laser Photonics Rev., Vol. 11, No. 6, 1700165, 2017.
doi:10.1002/lpor.201700165

8. Chen, R.-P., K.-H. Chew, C.-Q. Dai, and G. Zhou, "Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization," Phys. Rev. A, Vol. 96, No. 5, 053862, 2017.
doi:10.1103/PhysRevA.96.053862

9. Chen, R.-P. and C.-Q. Dai, "Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation," Nonlinear Dyn, Vol. 88, 2807-2816, 2017.
doi:10.1007/s11071-017-3413-5

10. Chen, R.-P. and C.-Q. Dai, "Vortex solitons of the (3 + 1)-dimensional spatially modulated cubicquintic nonlinear Schr¨odinger equation with the transverse modulation," Nonlinear Dyn, Vol. 90, 1563-1570, 2017.
doi:10.1007/s11071-017-3748-y

11. Thide, B., H. Then, J. SjAoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the lowfrequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701-1-087701-4, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701

12. Edfos, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antennas Propagat., Vol. 60, 1126-1131, 2012.
doi:10.1109/TAP.2011.2173142

13. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, IEEE Trans. Antennas Propagat., Vol. 58, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

14. Tennant, A. and B. Allen, "Generation of OAM radio waves using circular time-switched array antenna," Electron. Lett., Vol. 48, 1365-1366, 2012.
doi:10.1049/el.2012.2664

15. Tamburini, F., E. Mari, A. Sponselli, F. Romanato, B. Thid´e, A. Bianchini, L. Palmieri, and C. G. Someda, "Encoding many channels in the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

16. Tamburini, F., E. Mari, B. Thide, C. Barbieri, and F. Romanato, "Experimental verification of photon angular momentum and vorticity with radio techniques," Appl. Phys. Lett., Vol. 99, 204102-1-204102-3, 2011.

17. Yu, S., G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.
doi:10.1063/1.4953786

18. Zhang, Z., S. Xiao, Y. Li, and B. Z. Wang, "A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 521-524, 2017.

19. Hui, X., S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

20. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.
doi:10.2528/PIER17082302

21. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

22. Barbuto, M., F. Bilotti, and A. Toscano, "Patch antenna generating structured fields with a Mobius polarization state," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1345-1348, 2017.
doi:10.1109/LAWP.2016.2634081

23. Bauer, T., P. Banzer, E. Karimi, S. Orlov, A. Rubano, L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs, "Observation of optical polarization Mobius strips," Science, Vol. 347, 964-966, 2015.
doi:10.1126/science.1260635

24. Galvez, E. J., N. Smiley, and N. Fernandes, "Composite optical vortices formed by collinear Laguerre-Gauss beams," Proceedings of SPIE 6131, Nanomanipulation with Light II, 613105, Feb. 9, 2006.

25. Maleev, I. D. and G. A. Swartzlander, "Composite optical vortices," J. Opt. Soc. Am. B, Vol. 20, 1169-1176, 2003.
doi:10.1364/JOSAB.20.001169

26. De Angelis, L., F. Alpeggiani, A. Di Falco, and L. Kuipers, "Persistence and fidelity of phase singularities in optical random waves," Frontiers in Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.82, 2016.

27. Dennis, M. R., R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, "Isolated optical vortex knots," Nature Physics, Vol. 6, 118-121, 2010.
doi:10.1038/nphys1504

28. Flossmann, F., K. O’Holleran, M. R. Dennis, and M. J. Padgett, "Polarization singularities in 2D and 3D speckle fields," Phys. Rev. Lett., Vol. 100, 203902, 2008.
doi:10.1103/PhysRevLett.100.203902

29. Cardano, F., E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, "Generation and dynamics of optical beams with polarization singularities," Opt. Express, Vol. 21, 8815-8820, 2013.
doi:10.1364/OE.21.008815

30. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Trans. Antennas Propagat., Vol. 27, 660-664, 1979.
doi:10.1109/TAP.1979.1142159

31. Huang, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 32, 991-994, 1984.
doi:10.1109/TAP.1984.1143455

32. Coleman, H. and B. Wright, "A compact flush-mounting antenna with direction finding and steerable cardioid pattern capability," IEEE Trans. Antennas Propagat., Vol. 32, No. 4, 412-414, Apr. 1984.
doi:10.1109/TAP.1984.1143319

33. Shafai, L., "Properties of microstrip phased arrays with self-scanning elements," Digest on Antennas and Propagation Society International Symposium, Vol. 2, 986-988, San Jose, CA, USA, 1989.

34. Lin, W., H. Wong, and R. W. Ziolkowski, "Wideband pattern-reconfigurable antenna with switchable broadside and conical beams," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2638-2641, 2017.
doi:10.1109/LAWP.2017.2738101

35. Labadie, N. R., S. K. Sharma, and G. M. Rebeiz, "A circularly polarized multiple radiating mode microstrip antenna for satellite receive applications," IEEE Trans. Antennas Propagat., Vol. 62, No. 7, 3490-3500, Jul. 2014.
doi:10.1109/TAP.2014.2320860