Vol. 30
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Hybrid Ray-FDTD Moving Coordinate Frame Approach for Long Range Tracking of Collimated Wavepackets
By
, Vol. 30, 1-32, 2001
Abstract
Modeling of long range propagation of collimated wavepackets poses some major difficulties with the conventional FDTD scheme. The difficulties arise from the vast computer resources needed to discretize the entire region of interest and the accumulation of numerical dispersion error. As a means for circumventing these difficulties, the moving frame FDTD approach is in this work. In this approach, the computational grid size is limited to the order of the pulse length, and it and moves along with the pulse. The issues discussed in conjunction with this method are those of numerical dispersion, which is shown to be reduced substantially compared with the stationary formulation, numerical stability, and absorbing boundary conditions at the leading, trailing and side boundaries, Numerical results of pulsed beam propagation in both homogeneous and plane stratified media are shown, and the capability of the method is demonstrated with propagation distances exceeding the order of 104 pulse lengths.
Citation
Y. Pemper Ehud Heyman Raphael Kastner Richard Ziolkowski , "Hybrid Ray-FDTD Moving Coordinate Frame Approach for Long Range Tracking of Collimated Wavepackets," , Vol. 30, 1-32, 2001.
doi:10.2528/PIER00021505
http://www.jpier.org/PIER/pier.php?paper=0002155
References

1. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell’s equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196

2. Ziolkowski, R. W., "Exact solutions of the wave equation with complex locations," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1063/1.526579

3. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301

4. Moses, H. E. and R. T. Prosser, "Acoustic and electromagnetic bullets. New exact solutions of the acoustic and Maxwell’s equation," SIAM J. Appl. Math., Vol. 50, 1325-1340, 1990.
doi:10.1137/0150079

5. Heyman, E. and L. B. Felsen, "Complex-source pulsed-beam fields," J. Opt. Soc. Am. A, Vol. 6, No. 6, 806-816, 1989.
doi:10.1364/JOSAA.6.000806

6. Heyman, E., B. Z. Steinberg, and R. Ianconescu, "Electromagnetic complex source pulsed beam fields," IEEE Trans. Antennas Propagat., Vol. 38, 957-963, 1990.
doi:10.1109/8.55605

7. Heyman, E., "Pulsed beam propagation in inhomogeneous medium," IEEE Trans. Antennas Propagat., Vol. 42, 311-319, 1994.
doi:10.1109/8.280715

8. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.

9. Taflove, A., Computational Electrodynamics, The Finite Difference Time-Domain Method, Artech House, Boston, 1995.

10. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas Propagat. Magazine, Vol. 37, No. 4, 39-56, 1995.
doi:10.1109/74.414731

11. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Mathematics of Computation, Vol. 31, 629-651, 1977.
doi:10.1090/S0025-5718-1977-0436612-4

12. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagnetic Compatibility, Vol. 23, 377-382, 1989.
doi:10.1109/TEMC.1981.303970

13. Higdon, R. L., "Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation," Mathematics of Computation, Vol. 47, 437-459, 1986.

14. Higdon, R. L., "Numerical absorbing boundary conditions for the wave equation," Mathematics of Computation, Vol. 49, 65-90, 1987.
doi:10.1090/S0025-5718-1987-0890254-1

15. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving window approach to pulse propagation," Proc. of the 1994 International IEEE/AP-S Symposium, 1414-1417, Seattle, WA, 1994.

16. Fidel, B., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving frame approach to pulse propagation," J. Comp. Phys., Vol. 138, 480-500, 1997.
doi:10.1006/jcph.1997.5827

17. Hile, C. V. and W. L. Kath, "Numerical solutions of Maxwell’s equations for nonlinear-optical pulse propagation," J. Opt. Soc. Am. B, Vol. 13, No. 6, 1135-1145, 1996.
doi:10.1364/JOSAB.13.001135

18. Pemper, Y., E. Heyman, R. Kastner, and R. W. Ziolkowski, "Hybrid ray-FDTD moving coordinate frame approach for long range tracking of pulsed fields in graded index waveguides," J. Electromagnetic Waves and Applications, Vol. 38, 957-963, 1990.

19. Lee, D. and A. D. Pierce, "Parabolic equation development in recent decade," J. Comput. Aconst., Vol. 3, No. 2, 95-173, 1995.
doi:10.1142/S0218396X95000070

20. Jensen, F. B., W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, AIP Press, Woodbury, NY, 1994.

21. Murphy, J. E., "Finite-difference treatment of a time-domain parabolic equation: Theory," J. Acoust. Soc. Am., Vol. 77, No. 5, 1406-1417, 1985.

22. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation methods," IEEE Photon. Technol. Lett., Vol. 6, No. 7, 848-850, 1994.
doi:10.1109/68.311475

23. Masoudi, H. M. and J. M. Arnold, "Parallel beam propagation method for the analysis of second harmonic generation," IEEE Photon. Technol. Lett., Vol. 7, No. 4, 400-402, 1995.
doi:10.1109/68.376815

24. McDonald, B. E. and W. A. Kuperman, "Time domain formulation for pulse propagation including nonlinear behavior at a caustic," J. Aconst. Soc. Am., Vol. 81, No. 5, 1406-1417, 1987.
doi:10.1121/1.394546

25. Aloni, E., R. Kastner, E. Heyman, and R. W. Ziolkowski, "Reduction of numerical dispersion errors in the FDTD with multiple moving coordinate systems," URSI Meeting, Baltimore, MD, July 21–26, 1996.