Vol. 30
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Efficient Capacitance Computation for Three-Dimensional Structures Based on Adaptive Integral Method
By
, Vol. 30, 33-46, 2001
Abstract
The adaptive integral method (AIM) is applied in this paper to calculate the capacitance coefficients for an arbitrarily shaped three-dimensional structure. The uniformity of multipole moment approximation is revealed theoretically and numerically; it is realized that the approach can guarantee the accuracy of AIM for computing capacitance of any structure. The memory requirement and computational complexity of the present method are less than O(N1.5) and O(N1.5 logN) for three-dimensional problems, respectively. Numerical experiments for several conducting structures demonstrate that the present method is accurate and efficient to compute capacitance of an arbitrarily shaped three-dimensional structure.
Citation
C.-F. Wang L.-W. Li P.-S. Kooi M.-S. Leong , "Efficient Capacitance Computation for Three-Dimensional Structures Based on Adaptive Integral Method," , Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302
http://www.jpier.org/PIER/pier.php?paper=0003132
References

1. Song, J. M. and W. C. Chew, "Fast multipole method solution using parametric geometry," Microwave Opt. Tech. Lett., Vol. 7, No. 16, 760-765, Nov. 1994.
doi:10.1002/mop.4650071612

2. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

3. Greengard, L., The Rapid Evaluation of Potential Fields in Partial Systems, MIT Press, Cambridge, MA, 1988.

4. Rokhlin, V., "Rapid solution of integral equation of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

5. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, June 1993.
doi:10.1109/74.250128

6. Brandt, A., "Multilevel computations of integral transforms and partical interactions with oscillatory kernels," Comput. Phys. Commun., Vol. 65, No. 1-3, 24-38, 1991.
doi:10.1016/0010-4655(91)90151-A

7. Nabors, K. and J. White, "FastCap: A multipole accelerated 3-D capacitance extraction program," IEEE Trans. Computer-Aided Design, Vol. 10, No. 11, 1447-1459, Nov. 1991.
doi:10.1109/43.97624

8. Nabors, K., S. Kim, and J. White, "Fast capacitance extraction of general three-dimensional structures," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 7, 1496-1506, July 1992.
doi:10.1109/22.146331

9. Kamon, M., M. J. Tsuk, and J. White, "FASTHENRY: A multipole-accelerated 3-D inductance extraction program," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 9, 1750-1758, Sept. 1994.
doi:10.1109/22.310584

10. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "A fast integral equation solver for electromagnetic scattering problems," IEEE APS Int. Symp. Dig., Vol. 1, 416-419, 1994.

11. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, Sept.–Oct. 1996.
doi:10.1029/96RS02504

12. Phillips, J. R. and J. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Syst., Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

13. Ling, F., C. F. Wang, and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures," J. Electromagn. Waves Appl., Vol. 12, No. 8, 1021-1037, 1998.
doi:10.1163/156939398X01268

14. Wang, C. F., F. Ling, J. M. Song, and J. M. Jin, "Adaptive integral solution of combined field integral equation," Microwave Opt. Tech. Lett., Vol. 19, No. 5, 321-328, Dec. 1998.
doi:10.1002/(SICI)1098-2760(19981205)19:5<321::AID-MOP3>3.0.CO;2-G

15. Smythe, W. R., Static and Dynamic Electricity, 3rd Edition, A Summa Book, Revised Printing, New York, 1989.

16. Greason, W. D., Electrostatic Discharge in Electronics, Research Studies Press Ltd., England, 1992.

17. Ruehli, A. E. and P. A. Brennan, "Efficient capacitance calculations for three-dimensional multiconductor systems," IEEE Trans. Microwave Theory Tech., Vol. 21, No. 2, 76-82, Feb. 1973.
doi:10.1109/TMTT.1973.1127927

18. Brennan, S. R., A Dictionary of Applied Physics, Vol. 2, Electricity, Macmillan, London, 1922.

19. Jaswon, M. A. and G. T. Symm, Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 1977.