Vol. 31
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Computationally Efficient Expressions of the Dyadic Green's Function for Rectangular Enclosures
By
, Vol. 31, 195-223, 2001
Abstract
This paper considers expressions of the dyadic Green's function for rectangular enclosures, which are efficient from a computational point of view. The inherent application is to solve numerically electromagnetic scattering problems with an integral equation formulation, using the Method of Moments. The Green's dyadic is derived from an image-spectral approach, which has the flexibility to generate directly the expression with the fastest convergence once the locations of both the observation and the source points are given. When the observation point is at the source region, slowly converging sums arise that are overcome by extending the method of Ewald to the dyadic case. Numerical proofs are reported in tabular form to validate the technique developed.
Citation
Filippo Marliani A. Ciccolella , "Computationally Efficient Expressions of the Dyadic Green's Function for Rectangular Enclosures," , Vol. 31, 195-223, 2001.
doi:10.2528/PIER00062901
http://www.jpier.org/PIER/pier.php?paper=0006291
References

1. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Part TT., 1849–1851, McGraw-Hill, New York, 1953.

2. Tai, C.-T., "Different representations of dyadic Green’s functions for a rectangular cavity," IEEE Transactions on Microwave Theory and Techniques, 597-601, Sept. 1976.
doi:10.1109/TMTT.1976.1128914

3. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, 2nd Edition, IEEE Press, 1994.

4. Rahmat-Samii, Y., "On the question of computation of the dyadic Green’s function at the source region in waveguides and cavities," IEEE Transactions on Microwave Theory and Techniques, 762-765, Sept. 1975.
doi:10.1109/TMTT.1975.1128671

5. Collin, R. E., Field Theory of Guided Waves, Chap. 5, 2nd Edition, IEEE Press, 1991.

6. Hamid, M. A. K. and W. A. Johnson, "Ray-optical solution for the dyadic Green’s function in a rectangular cavity," Electronic Letters, Vol. 6, 317-319, May 1970.
doi:10.1049/el:19700223

7. Cui, T. J., J. Chen, and C. H. Liang, "Complex images of a point charge in rectangular conducting planes," IEEE Transactions on Electromagnetic Compatibility, 285-288, 1995.
doi:10.1109/15.385895

8. Wu, D. I. and D. C. Chang, "A hybrid representation of the Green’s function in an overmoded rectangular cavity," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 9, 1334-1442, Sep. 1988.
doi:10.1109/22.3680

9. Johnson, W. A., A. Q. Haward, and D. G. Dudley, "On the irrotational component of the electric Green’s dyadic," Radio Science, 961-967, Nov.–Dec. 1979.

10. Singh, S. and R. Singh, "Application of transforms to accelerate the summation of periodic free space Green’s function," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 11, Nov. 1990.

11. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space Green’s function," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 12, 1958-1962, Dec. 1990.
doi:10.1109/8.60985

12. Jorgenson, R. E. and R. Mittra, "Efficient calculation of the free space periodic Green’s function," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 5, 633-642, May 1990.
doi:10.1109/8.53491

13. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale,", Vol. 64, 253-287, Ann der Physik, 1921.

14. Tosi, M., "Evaluation of electrostatic lattice potentials by the Ewald method,", Solid State Physics 16, F. Seitz and D. Turnbull (Eds.), 107–120, Academic Press, New York, 1964.

15. Balanis, C. A., Antenna Theory: Analysis and Design, 405-409, John Wiley & Sons, USA, 1997.