1. Choi, D. H. and W. J. R. Hoefer, "A graded mesh FD-TD algorithm for eigenvalue problems," 17th European Microwave Conference, 413-417, 1987. Google Scholar
2. Kim, I. S. and W. J. R. Hoefer, "A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 6, 812-815, 1990.
doi:10.1109/22.130985 Google Scholar
3. Zivanovic, S. S., K. S. Yee, and K. K. Mei, "A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 471-479, 1991.
doi:10.1109/22.75289 Google Scholar
4. Beggs, J. H., R. J. Luebbers, K. S. Kunz, and K. S. Yee, "Wide-band finite difference time domain implementation of surface impedance boundary conditions for good conductors," IEEE Antennas and Propagat. Soc. Int. Symposium, Vol. 1, 406-409, London, Ontario, 1991. Google Scholar
5. Lee, J.-F., R. Palandech, and R. Mittra, "Modeling three-dimensional discontinuities in waveguides using non-orthogonal FDTD algorithm," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 346-352, 1992.
doi:10.1109/22.120108 Google Scholar
6. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident parallel-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 1, 19-22, 1994.
doi:10.1002/mop.4650070109 Google Scholar
7. Oh, K. S. and J. E. Schutt-Aine, "An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method," IEEE Trans. Antennas Propagat., Vol. 43, No. 7, 660-666, 1995.
doi:10.1109/8.391136 Google Scholar
8. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116 Google Scholar
9. Chamberlin, K. and L. Gordon, "Deriving a synthetic conductivity to enable accurate prediction of losses in good conductors using FDTD," 10th Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 46-52, Monterey, CA, March 1994. Google Scholar
10. Lee, C. F., R. T. Shin, and J. A. Kong, "Time domain modeling of impedance boundary condition," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1847-1850, 1992.
doi:10.1109/22.156615 Google Scholar
11. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident perpendicular-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 8, 355-359, 1994.
doi:10.1002/mop.4650070806 Google Scholar
12. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.
13. Staelin, D. H., J. A. Kong, and A. W. Morgenthaler, Electromagnetic Waves, Prentice Hall, 1994.
14. Johnson, D. E., J. L. Hilburn, and J. R. Johnson, Basic Circuit Analysis, Prentice-Hall, 1978.