Vol. 31
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Finite Difference Time Domain (FDTD) Impedance Boundary Condition for Thin Finite Conducting Sheets
By
, Vol. 31, 1-30, 2001
Abstract
A new Impedance Boundary Condition (IBC) for two dimensional Finite Difference Time Domain simulations containing thin, good conductor sheets is presented. The IBC uses a recursive convolution scheme based on approximating the conductor's impedance as a sum of exponentials. The effects of FDTD parameters such as grid size and time step on simulation accuracy are presented. The IBC verification is performed by comparing the quality factors of rectangular resonant structures determined by the FDTD simulation and analytical methods. The IBC is shown to accurately model the conductor loss over a wide frequency range.
Citation
J. J. Akerson M. A. Tassoudji Y. E. Yang J. A. Kong , "Finite Difference Time Domain (FDTD) Impedance Boundary Condition for Thin Finite Conducting Sheets," , Vol. 31, 1-30, 2001.
doi:10.2528/PIER00070101
http://www.jpier.org/PIER/pier.php?paper=0007011
References

1. Choi, D. H. and W. J. R. Hoefer, "A graded mesh FD-TD algorithm for eigenvalue problems," 17th European Microwave Conference, 413-417, 1987.

2. Kim, I. S. and W. J. R. Hoefer, "A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 6, 812-815, 1990.
doi:10.1109/22.130985

3. Zivanovic, S. S., K. S. Yee, and K. K. Mei, "A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 471-479, 1991.
doi:10.1109/22.75289

4. Beggs, J. H., R. J. Luebbers, K. S. Kunz, and K. S. Yee, "Wide-band finite difference time domain implementation of surface impedance boundary conditions for good conductors," IEEE Antennas and Propagat. Soc. Int. Symposium, Vol. 1, 406-409, London, Ontario, 1991.

5. Lee, J.-F., R. Palandech, and R. Mittra, "Modeling three-dimensional discontinuities in waveguides using non-orthogonal FDTD algorithm," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 346-352, 1992.
doi:10.1109/22.120108

6. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident parallel-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 1, 19-22, 1994.
doi:10.1002/mop.4650070109

7. Oh, K. S. and J. E. Schutt-Aine, "An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method," IEEE Trans. Antennas Propagat., Vol. 43, No. 7, 660-666, 1995.
doi:10.1109/8.391136

8. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

9. Chamberlin, K. and L. Gordon, "Deriving a synthetic conductivity to enable accurate prediction of losses in good conductors using FDTD," 10th Annual Review of Progress in Applied Computational Electromagnetics, Vol. 2, 46-52, Monterey, CA, March 1994.

10. Lee, C. F., R. T. Shin, and J. A. Kong, "Time domain modeling of impedance boundary condition," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1847-1850, 1992.
doi:10.1109/22.156615

11. Wang, B. Z., "Time-domain modeling of the impedance boundary condition for an oblique incident perpendicular-polarization plane wave," Microwave Opt. Technol. Lett., Vol. 7, No. 8, 355-359, 1994.
doi:10.1002/mop.4650070806

12. Abramovitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, NY, 1965.

13. Staelin, D. H., J. A. Kong, and A. W. Morgenthaler, Electromagnetic Waves, Prentice Hall, Eaglewood Cliffs, NJ, 1994.

14. Johnson, D. E., J. L. Hilburn, and J. R. Johnson, Basic Circuit Analysis, Prentice-Hall, Eaglewood Cliffs, NJ, 1978.