Vol. 32
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Geometric Aspects of the Simplicial Discretization of Maxwell's Equations
By
, Vol. 32, 171-188, 2001
Abstract
Aspects of the geometric discretization of electromagnetic fields on simplicial lattices are considered. First, the convenience of the use of exterior differential forms to represent the field quantities through their natural role as duals (cochains) of the geometric constituents of the lattice (chains = nodes, edges, faces, volumes) is briefly reviewed. Then, the use of the barycentric subdivision to decompose the (ordinary) simplicial primal lattice together with the (twisted) non-simplicial barycentric dual lattice into simplicial elements is considered. Finally, the construction of lattice Hodge operators by using Whitney maps on the first barycentric subdivision is described. The objective is to arrive at a discrete formulation of electromagnetic fields on general lattices which better adheres to the underlying physics.
Citation
Fernando Lisboa Teixeira , "Geometric Aspects of the Simplicial Discretization of Maxwell's Equations," , Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107
http://www.jpier.org/PIER/pier.php?paper=00080107
References

1. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, 1957.
doi:10.1515/9781400877577

5. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, New York, 1973.

3. Burke, W. L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9781139171786

4. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Am. J. Math., Vol. 98, No. 1, 79-104, 1976.
doi:10.2307/2373615

5. Weingarten, D., "Geometric formulation of electrodynamics and general relativity in discrete space-time," J. Math. Phys., Vol. 18, No. 1, 165-170, 1977.
doi:10.1063/1.523124

6. Muller, W., "Analytic torsion and R-torsion of Riemannian manifolds," Advances in Math., Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0

7. Tonti, E., "On the mathematical strucuture of a large class of physical theories," Rend. Acc. Lincei, Vol. 52, 48-56, 1972.

8. Tonti, E., "A mathematical model for physical theories," Rend. Acc. Lincei, Vol. 52, 175-181, 1972.

9. Tonti, E., "The algebraic-topological structure of physical theories," Proc. Conf. on Symmetry, Similarity, and Group Theoretic Meth. in Mechanics, 441-467, Calgary, Canada, 1974.

10. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism, and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, G. Ferrarese (ed.), 281–308, Pitagora Editrice Bologna, 1995.

11. Tonti, E., "Algebraic topology and computational electromagnetism," Proc. Fourth Int. Workshop on the Electric and Magnetic Fields: from Num. Meth. to Ind. Applicat., 284-294, Marseille, France, 1998.

12. Ohkuro, S., "Differential forms and Maxwell’s field: An application of harmonic integrals," J. Math. Phys., Vol. 11, No. 6, 2005-2012, 1970.
doi:10.1063/1.1665359

13. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048

14. Kheyfets, A. and W. A. Miller, "The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519

15. Bossavit, A., "Whitney forms: a new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988.

16. Bossavit, A., "Simplicial finite elements for scattering problems in electromagnetism," Comp. Meth. Appl. Mech. Engineering,, Vol. 76, 299-316, 1989.
doi:10.1016/0045-7825(89)90062-5

17. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. Thesis, Department of Electrical Engineering, McGill University, Montreal, Canada, 1984.

18. Kotiuga, P. R., "Variational principles for three-dimensional magnetostatics based on helicity," J. Appl. Phys., Vol. 63, No. 8, 3360-3362, 1988.
doi:10.1063/1.340782

19. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, No. 4, 2813-2815, 1989.
doi:10.1109/20.34293

20. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, No. 9, 5815-5817, 1990.
doi:10.1063/1.345973

21. Kotiuga, P. R., "Metric dependent aspects of inverse problems and functionals based on helicity," J. Appl. Phys., Vol. 73, No. 10, 5437-5439, 1993.
doi:10.1063/1.353708

22. Hammond, P. and D. Baldomir, "Dual energy methods in electromagnetism using tubes and slices," IEEE Proc. A, Vol. 135, No. 3, 167-172, 1988.

23. Bossavit, A., "Differential forms and the computation of fields and forces in electromagnetism," Eur. J. Mech. B, Vol. 10, No. 5, 474-488, 1991.

24. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, New York, 1998.

25. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for Div and Curl-free fields," IEEE Trans. Magn., Vol. 34, No. 5, 2551-2554, 1998.
doi:10.1109/20.717588

26. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250

27. Bossavit, A., "A posteriori error bounds by ‘local corrections’ using the dual mesh," IEEE Trans. Magn., Vol. 35, No. 3, 1350-1353, 1999.
doi:10.1109/20.767212

28. Bossavit, A., "On the notion of anisotropy of constitutive laws: Some implications of the ‘Hodge implies metric’ result,", private communication.
doi:10.1109/20.767212

29. Becher, P. and H. Joos, "The Dirac-Kahler equation and fermions on the lattice," Z. Phys. C, Vol. 15, 343-365, 1982.
doi:10.1007/BF01614426

30. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Electromagnetic boundary conditions and differential forms," IEE Proc., Microw. Ant. Prop., Vol. 142, 326-332, 1995.
doi:10.1049/ip-map:19952003

31. Jancewicz, B., "A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisotropic media," Ann. Phys., Vol. 245, 227-274, 1996.
doi:10.1006/aphy.1996.0009

32. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 133, 289-309, 1997.
doi:10.1006/jcph.1997.5656

33. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching eletromagnetic field theory using differential forms," IEEE Trans. Edu., Vol. 40, No. 1, 53-68, 1997.
doi:10.1109/13.554670

34. Warnick, K. F. and D. V. Arnold, "Green forms for anisotropic, inhomogeneous media," J. Electromagn. Waves Appl., Vol. 11, No. 8, 1145-1164, 1997.
doi:10.1163/156939397X01061

35. Arkko, A., T. Tarhasaari, and L. Kettunen, "A time domain method for high frequency problems exploring the Whitney complex," Proc. 14th. Ann. Rev. Prog. Appl. Comp. Electromag. Soc., 121-126, Monterey, CA, 1998.

36. Kraus, C. and R. Ziolkowsky, "Topological and geometrical considerations for Maxwell’s equations on unstructured meshes," Proc. URSI Meeting, 714, Montreal, Canada, 1997.

37. Hiptmair, R., "Canonical construction of finite elements," Math. Computat., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7

38. Hiptmair, R., "Discrete Hodge operators,", Tech. Rep. 126, SFB 382, University of Tubingen, Tubingen, Germany, 1999.

39. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," J. Electromagn. Waves Applicat., Vol. 13, No. 5, 665-686, 1999.
doi:10.1163/156939399X01104

40. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767

41. Albeverio, S. and B. Zegarlinski, "Construction of convergent simplicial approximations of quantum field on Riemannian manifolds ," Comm. Math. Phys., Vol. 132, 39-71, 1990.
doi:10.1007/BF02277999

42. Albeverio, S. and J. Schafer, "Abelian Chern-Simons theory and linking numbers via oscilatory integrals," J. Mat. Phys., Vol. 36, No. 5, 2157-2169, 1995.
doi:10.1063/1.531036

43. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories,", eprint http://arxiv.org/archive/hepth/961209, 1996.

44. Adams, D. H., "A double discretization of Abelian Chern-Simons theory," Phys. Rev. Lett., Vol. 78, No. 22, 4155-4158, 1997.
doi:10.1103/PhysRevLett.78.4155

45. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174

46. Kojima, T., Y. Saito, and R. Dang, "Dual mesh approach for semiconductor device simulator," IEEE Trans. Magn., Vol. 25, No. 4, 2953-2955, 1989.
doi:10.1109/20.34335

47. Bossavit, A., "How weak is the ‘weak solution’ in finite element methods," IEEE Trans. Magn., Vol. 34, No. 5, 2429-2432, 1998.
doi:10.1109/20.717558

48. Bossavit, A. and L. Kettunen, "Yee-schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Num. Model., Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

49. Witten, E., "Topological quantum field theory," Comm. Math. Phys., Vol. 117, 353-386, 1988.
doi:10.1007/BF01223371

50. Fukuma, M., S. Hosono, and H. Kawai, "Lattice topological field theory in two dimensions," Comm. Math. Phys., Vol. 161, 157-175, 1994.
doi:10.1007/BF02099416

51. Chung, S.-W., M. Fukuma, and A. Shapere, "Structure of topological lattice field theory in three dimensions," Int. J. Mod. Phys., Vol. 9, No. 8, 1305-1360, 1994.
doi:10.1142/S0217751X94000595

52. da Cunha, B. G. C. and P. T. Sobrinho, "Quasitopological field theories in two dimensions as soluble models," Int. J. Mod. Phys., Vol. 13, No. 21, 3667-3689, 1998.
doi:10.1142/S0217751X98001724

53. Felder, G., J, Frolich, J. Fuchs, and C. Schweigert, "Conformal boundary conditions and three-dimensional topological field theory," Phys. Rev. Lett., Vol. 84, No. 8, 1659-1662, 2000.
doi:10.1103/PhysRevLett.84.1659

54. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Propagat., Vol. 14, 302-307, 1966.

55. Taflove, A., "Computational Electrodynamics: The Finite- Difference Time-Domain Method," Artech House, Boston, 1995.

56. Weiland, T., "On the numerical solutions of Maxwell’s equations and applications in the field of accelerator physics," Particle Accelerators, Vol. 15, 245-292, 1984.

57. Weiland, T., "Time domain electromagnetic field computations with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

58. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, No. 10, 4843-4850, 1994.

59. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1764-1771, 1999.

60. Mattiussi, C., "Finite volume, finite difference, and finite element methods for physical field problems," Advancing Imaging Electron. Phys., Vol. 113, 1-146, 2000.

61. McCartin, B. J. and J. F. DiCello, "Three dimensional finite difference frequency domain scattering computation using the control region approximation," IEEE Trans. Magn., Vol. 25, No. 4, 3092-3094, 1989.

62. Rappaport, C. M. and E. B. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Trans. Magn., Vol. 27, No. 5, 3848-3851, 1991.

63. Hyman, J. M. and M. Shashkov, "Natural discretization for the divergence, gradient and curl on logically rectangular grids," Comput. Math. Appl., Vol. 33, 81-104, 1997.

64. Hyman, J. M. and M. Shashkov, "Adjoint operators for the natural discretization for the divergence, gradient and curl on logically rectangular grids," Appl. Num. Math., Vol. 25, 413-442, 1997.

65. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comp. Phys., Vol. 151, 881-909, 1999.