1. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, 1957.
doi:10.1515/9781400877577
5. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, New York, 1973.
3. Burke, W. L., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9781139171786
4. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Am. J. Math., Vol. 98, No. 1, 79-104, 1976.
doi:10.2307/2373615 Google Scholar
5. Weingarten, D., "Geometric formulation of electrodynamics and general relativity in discrete space-time," J. Math. Phys., Vol. 18, No. 1, 165-170, 1977.
doi:10.1063/1.523124 Google Scholar
6. Muller, W., "Analytic torsion and R-torsion of Riemannian manifolds," Advances in Math., Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0 Google Scholar
7. Tonti, E., "On the mathematical strucuture of a large class of physical theories," Rend. Acc. Lincei, Vol. 52, 48-56, 1972. Google Scholar
8. Tonti, E., "A mathematical model for physical theories," Rend. Acc. Lincei, Vol. 52, 175-181, 1972. Google Scholar
9. Tonti, E., "The algebraic-topological structure of physical theories," Proc. Conf. on Symmetry, Similarity, and Group Theoretic Meth. in Mechanics, 441-467, Calgary, Canada, 1974. Google Scholar
10. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism, and Geometrical Structures, for the 80th birthday of A. Lichnerowicz, G. Ferrarese (ed.), 281–308, Pitagora Editrice Bologna, 1995. Google Scholar
11. Tonti, E., "Algebraic topology and computational electromagnetism," Proc. Fourth Int. Workshop on the Electric and Magnetic Fields: from Num. Meth. to Ind. Applicat., 284-294, Marseille, France, 1998. Google Scholar
12. Ohkuro, S., "Differential forms and Maxwell’s field: An application of harmonic integrals," J. Math. Phys., Vol. 11, No. 6, 2005-2012, 1970.
doi:10.1063/1.1665359 Google Scholar
13. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048 Google Scholar
14. Kheyfets, A. and W. A. Miller, "The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519 Google Scholar
15. Bossavit, A., "Whitney forms: a new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988. Google Scholar
16. Bossavit, A., "Simplicial finite elements for scattering problems in electromagnetism," Comp. Meth. Appl. Mech. Engineering,, Vol. 76, 299-316, 1989.
doi:10.1016/0045-7825(89)90062-5 Google Scholar
17. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. Thesis, Department of Electrical Engineering, McGill University, Montreal, Canada, 1984. Google Scholar
18. Kotiuga, P. R., "Variational principles for three-dimensional magnetostatics based on helicity," J. Appl. Phys., Vol. 63, No. 8, 3360-3362, 1988.
doi:10.1063/1.340782 Google Scholar
19. Kotiuga, P. R., "Helicity functionals and metric invariance in three dimensions," IEEE Trans. Magn., Vol. 25, No. 4, 2813-2815, 1989.
doi:10.1109/20.34293 Google Scholar
20. Kotiuga, P. R., "Analysis of finite-element matrices arising from discretizations of helicity functionals," J. Appl. Phys., Vol. 67, No. 9, 5815-5817, 1990.
doi:10.1063/1.345973 Google Scholar
21. Kotiuga, P. R., "Metric dependent aspects of inverse problems and functionals based on helicity," J. Appl. Phys., Vol. 73, No. 10, 5437-5439, 1993.
doi:10.1063/1.353708 Google Scholar
22. Hammond, P. and D. Baldomir, "Dual energy methods in electromagnetism using tubes and slices," IEEE Proc. A, Vol. 135, No. 3, 167-172, 1988. Google Scholar
23. Bossavit, A., "Differential forms and the computation of fields and forces in electromagnetism," Eur. J. Mech. B, Vol. 10, No. 5, 474-488, 1991. Google Scholar
24. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, New York, 1998.
25. Kettunen, L., K. Forsman, and A. Bossavit, "Discrete spaces for Div and Curl-free fields," IEEE Trans. Magn., Vol. 34, No. 5, 2551-2554, 1998.
doi:10.1109/20.717588 Google Scholar
26. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
27. Bossavit, A., "A posteriori error bounds by ‘local corrections’ using the dual mesh," IEEE Trans. Magn., Vol. 35, No. 3, 1350-1353, 1999.
doi:10.1109/20.767212 Google Scholar
28. Bossavit, A., "On the notion of anisotropy of constitutive laws: Some implications of the ‘Hodge implies metric’ result,", private communication.
doi:10.1109/20.767212 Google Scholar
29. Becher, P. and H. Joos, "The Dirac-Kahler equation and fermions on the lattice," Z. Phys. C, Vol. 15, 343-365, 1982.
doi:10.1007/BF01614426 Google Scholar
30. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Electromagnetic boundary conditions and differential forms," IEE Proc., Microw. Ant. Prop., Vol. 142, 326-332, 1995.
doi:10.1049/ip-map:19952003 Google Scholar
31. Jancewicz, B., "A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisotropic media," Ann. Phys., Vol. 245, 227-274, 1996.
doi:10.1006/aphy.1996.0009 Google Scholar
32. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 133, 289-309, 1997.
doi:10.1006/jcph.1997.5656 Google Scholar
33. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching eletromagnetic field theory using differential forms," IEEE Trans. Edu., Vol. 40, No. 1, 53-68, 1997.
doi:10.1109/13.554670 Google Scholar
34. Warnick, K. F. and D. V. Arnold, "Green forms for anisotropic, inhomogeneous media," J. Electromagn. Waves Appl., Vol. 11, No. 8, 1145-1164, 1997.
doi:10.1163/156939397X01061 Google Scholar
35. Arkko, A., T. Tarhasaari, and L. Kettunen, "A time domain method for high frequency problems exploring the Whitney complex," Proc. 14th. Ann. Rev. Prog. Appl. Comp. Electromag. Soc., 121-126, Monterey, CA, 1998. Google Scholar
36. Kraus, C. and R. Ziolkowsky, "Topological and geometrical considerations for Maxwell’s equations on unstructured meshes," Proc. URSI Meeting, 714, Montreal, Canada, 1997. Google Scholar
37. Hiptmair, R., "Canonical construction of finite elements," Math. Computat., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7 Google Scholar
38. Hiptmair, R., "Discrete Hodge operators,", Tech. Rep. 126, SFB 382, University of Tubingen, Tubingen, Germany, 1999. Google Scholar
39. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," J. Electromagn. Waves Applicat., Vol. 13, No. 5, 665-686, 1999.
doi:10.1163/156939399X01104 Google Scholar
40. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
41. Albeverio, S. and B. Zegarlinski, "Construction of convergent simplicial approximations of quantum field on Riemannian manifolds ," Comm. Math. Phys., Vol. 132, 39-71, 1990.
doi:10.1007/BF02277999 Google Scholar
42. Albeverio, S. and J. Schafer, "Abelian Chern-Simons theory and linking numbers via oscilatory integrals," J. Mat. Phys., Vol. 36, No. 5, 2157-2169, 1995.
doi:10.1063/1.531036 Google Scholar
43. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories,", eprint http://arxiv.org/archive/hepth/961209, 1996. Google Scholar
44. Adams, D. H., "A double discretization of Abelian Chern-Simons theory," Phys. Rev. Lett., Vol. 78, No. 22, 4155-4158, 1997.
doi:10.1103/PhysRevLett.78.4155 Google Scholar
45. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174 Google Scholar
46. Kojima, T., Y. Saito, and R. Dang, "Dual mesh approach for semiconductor device simulator," IEEE Trans. Magn., Vol. 25, No. 4, 2953-2955, 1989.
doi:10.1109/20.34335 Google Scholar
47. Bossavit, A., "How weak is the ‘weak solution’ in finite element methods," IEEE Trans. Magn., Vol. 34, No. 5, 2429-2432, 1998.
doi:10.1109/20.717558 Google Scholar
48. Bossavit, A. and L. Kettunen, "Yee-schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Num. Model., Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G Google Scholar
49. Witten, E., "Topological quantum field theory," Comm. Math. Phys., Vol. 117, 353-386, 1988.
doi:10.1007/BF01223371 Google Scholar
50. Fukuma, M., S. Hosono, and H. Kawai, "Lattice topological field theory in two dimensions," Comm. Math. Phys., Vol. 161, 157-175, 1994.
doi:10.1007/BF02099416 Google Scholar
51. Chung, S.-W., M. Fukuma, and A. Shapere, "Structure of topological lattice field theory in three dimensions," Int. J. Mod. Phys., Vol. 9, No. 8, 1305-1360, 1994.
doi:10.1142/S0217751X94000595 Google Scholar
52. da Cunha, B. G. C. and P. T. Sobrinho, "Quasitopological field theories in two dimensions as soluble models," Int. J. Mod. Phys., Vol. 13, No. 21, 3667-3689, 1998.
doi:10.1142/S0217751X98001724 Google Scholar
53. Felder, G., J, Frolich, J. Fuchs, and C. Schweigert, "Conformal boundary conditions and three-dimensional topological field theory," Phys. Rev. Lett., Vol. 84, No. 8, 1659-1662, 2000.
doi:10.1103/PhysRevLett.84.1659 Google Scholar
54. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Propagat., Vol. 14, 302-307, 1966. Google Scholar
55. Taflove, A., "Computational Electrodynamics: The Finite- Difference Time-Domain Method," Artech House, Boston, 1995. Google Scholar
56. Weiland, T., "On the numerical solutions of Maxwell’s equations and applications in the field of accelerator physics," Particle Accelerators, Vol. 15, 245-292, 1984. Google Scholar
57. Weiland, T., "Time domain electromagnetic field computations with finite difference methods," Int. J. Num. Model., Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
58. Chew, W. C., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, No. 10, 4843-4850, 1994. Google Scholar
59. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1764-1771, 1999. Google Scholar
60. Mattiussi, C., "Finite volume, finite difference, and finite element methods for physical field problems," Advancing Imaging Electron. Phys., Vol. 113, 1-146, 2000. Google Scholar
61. McCartin, B. J. and J. F. DiCello, "Three dimensional finite difference frequency domain scattering computation using the control region approximation," IEEE Trans. Magn., Vol. 25, No. 4, 3092-3094, 1989. Google Scholar
62. Rappaport, C. M. and E. B. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Trans. Magn., Vol. 27, No. 5, 3848-3851, 1991. Google Scholar
63. Hyman, J. M. and M. Shashkov, "Natural discretization for the divergence, gradient and curl on logically rectangular grids," Comput. Math. Appl., Vol. 33, 81-104, 1997. Google Scholar
64. Hyman, J. M. and M. Shashkov, "Adjoint operators for the natural discretization for the divergence, gradient and curl on logically rectangular grids," Appl. Num. Math., Vol. 25, 413-442, 1997. Google Scholar
65. Hyman, J. M. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comp. Phys., Vol. 151, 881-909, 1999. Google Scholar