1. Bartsch, M., U. van Rienen, and T. Weiland, "Consistent finite integration approach for coupled computation of static current distributions and electromagnetic fields," IEEE Trans. Magn., Vol. 34, No. 5, 3098-3101, Sept. 1998.
doi:10.1109/20.717725 Google Scholar
2. Bihn, M. and T. Weiland, "A Stable discretization scheme for the simulation of elastic waves," 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 2, 75-80, Berlin, 1997. Google Scholar
3. Bossavit, A., , private communication.
4. Bossavit, A., Computational Electromagnetism, Variational Formulations, Edge Elements, Complementarity, Academic Press, Boston, 1998.
5. Clemens, M., R. Schuhmann, U. van Rienen, and T. Weiland, "Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory," ACES Journal, Special Issue on Applied Mathematics: Meeting the Challenges Presented by Computational Electromagnetics, Vol. 11, No. 1, 70-84, March 1996. Google Scholar
6. Clemens, M., P. Thoma, T. Weiland, and U. van Rienen, "A survey on the computational electromagnetic field calculation with the FI method," Surveys on Mathematics for Industry, Vol. 8, No. 3–4, 213-232, 1999. Google Scholar
7. Cooper, R. K., M. J. Browman, T. Weiland, and U. van Rienen, "Waveguide calculations using established codes," IEEE Trans. Electron Devices, Vol. 35, No. 11, 2044-2047, 1988.
doi:10.1109/16.7425 Google Scholar
8. Cooper, R. K., U. van Rienen, and T. Weiland, "RF waveguide design by proven electromagnetic CAD systems," General Assembly of the URSI, Israel, Tel Aviv, August 1987. Google Scholar
9. Dehler, M., "Numerische l¨osung der Maxwellschen Gleichungen auf kreiszylindrischen gittern,", Ph.D. thesis, Darmstadt University of Technology, 1993. Google Scholar
10. Dehler, M. and T. Weiland, "A new spectral domain technique for the calculation of eigenvalues in curvilinear coordinates," IEEE Trans. Magn., Vol. 30, No. 5, 3574-3577, 1994.
doi:10.1109/20.312711 Google Scholar
11. Dohlus, M., P. Thoma, and T. Weiland, "Stability of finite difference time domain methods related to space and time discretization," IEEE Trans. Microwave Theory Tech., submitted. Google Scholar
12. Fellinger, P., "Ein Verfahren zur numerischen l¨osung elastischer wellenausbreitungsprobleme im zeitbereich durch direkte diskretisierung der elastodynamischen grundgleichungen,", Ph.D. thesis, Gesamthochschule Kassel, 1991. Google Scholar
13. Henke, H., Spherical Modes, ISR-RF 81-29, CERN, Geneva, Switzerland, 1981.
14. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
15. Nedelec, J., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668 Google Scholar
16. Pinder, P., "Zur numerischen berechnung gekoppelter elektromagnetischer und thermischer felder,", Ph.D. thesis, Darmstadt University of Technology, 1998. Google Scholar
17. Pinder, P. and T. Weiland, "Numerical calculation of coupled electromagnetic and thermal fields using the finite integration method," PIERS’96, 1996. Google Scholar
18. Raviart, P.-A. and J.-M. Thomas, "A mixed finite element method for second order elliptic problems," Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes (eds.), 292–315. Springer-Verlag, 1977. Google Scholar
19. Schmitt, D. and T. Weiland, "2D and 3D computations of eigenvalue problems," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 2, 1793-1796, 1992. Google Scholar
20. Schuhmann, R. and T. Weiland, "Stability of FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 5, 2751-2754, Sept. 1998. Google Scholar
21. Schuhmann, R. and T.Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," Int. J. Numerical Modelling, Focused Issue on “Finite Difference Time and Frequency Domain Methods”, Vol. 11, 299-306, 1998. Google Scholar
22. Tarhasaari, T., L. Kettunen, and A. Bossavit, "An interpretation of the Galerkin method as the realization of a discrete hodge operator," 8th Biennal IEEE Conf. on Electromagnetic Field Computation CEFC 1998, Tucson, Arizona, USA, June 1998. Google Scholar
23. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," Int. J. Numerical Modelling, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A Google Scholar
24. Tuckmantel, J., Application of SAP in URMEL, EF/RF 85-4, CERN, Geneva, Switzerland, July 1985.
25. van Rienen, U., "Zur numerischen Berechnung zeitharmonischer elektromagnetischer felder in offenen, zylindersymmetrischen strukturen unter verwendung von mehrgitterverfahren,", Ph.D. thesis, Darmstadt University of Technology, 1989. Google Scholar
26. van Rienen, U., "Finite integration technique on triangular grids revisited," Int. J. Numerical Modelling: Electronic Networks, Devices and Fields, Special Issue “Finite Difference Time and Frequency Domain Methods”, Vol. 12, 107-128, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<107::AID-JNM322>3.0.CO;2-2 Google Scholar
27. van Rienen, U., Numerical Methods in Computational Electrodynamics --- Linear Systems in Practical Applications, Vol. 12 of Lecture Notes in Computational Science and Engineering, Springer, 2000.
28. van Rienen, U., P. Pinder, and T. Weiland, "Consistent finite integration approach for the coupled calculation of electromagnetic fields and stationary temperature distributions," 7th Biennal IEEE Conference on Electromagnetic Field Computation (CEFC), Vol. 294, Okayama, Japan, March 1996. Google Scholar
29. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities," IEEE Trans. Magn., Vol. 21, No. 6, 2317-2320, November 1985.
doi:10.1109/TMAG.1985.1064183 Google Scholar
30. van Rienen, U. and T. Weiland, "Cavity and waveguide design by triangular mesh code URMEL-T," Int. Linear Accelerator Conf. LINAC’86, No. SLAC-303, 286, Stanford University, June 1986. Google Scholar
31. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in waveguides and cylindrically symmetric cavities," Part. Acc., Vol. 20, 239-267, 1986/87. Google Scholar
32. Villeneuve, A. T., "Analysis of slotted, dielectrically loaded, rigded waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 524-532, 1984. Google Scholar
33. Weiland, T., "Eine methode zur l¨osung der Maxwellschen Gleichungen f¨ur sechskomponentige felder auf diskreter basis," Archiv f¨ur Elektrotechnik, Vol. 31, 116-120, 1977. Google Scholar
34. Weiland, T., "Zur berechnung der wirbelstr¨ome in beliebig geformten, lamellierten, dreidimensionalen eisenkorpern," Archiv f¨ur Elektrotechnik, Vol. 60, 345-351, 1978.
doi:10.1007/BF01576115 Google Scholar
35. Weiland, T., "On the unique numerical solution of Maxwellian Eigenvalue problems in three dimensions," Part. Acc., Vol. 17, 227-242, 1985. Google Scholar
36. Weiland, T., "Ein allgemeines verfahren zur l¨osung der Maxwell’schen Gleichungen und seine anwendung in physik und technik," Physikalische Blatter, Vol. 41, 380, 1986. Google Scholar
37. Weiland, T., "Elektromagnetisches CAD —rec hnergest¨utzte methoden zur berechnung von feldern,", Script, Darmstadt University of Technology, May 1995. Google Scholar
38. Weiland, T., "High precision eigenmode computation," Part. Acc., Vol. 56, 61-82, 1996. Google Scholar
39. Wolter, H., "Berechnung akustischer wellen und resonatoren mit der FIT-methode,", Ph.D. thesis, Darmstadt University of Technology, 1995. Google Scholar
40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966. Google Scholar