Vol. 32
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Covariant Isotropic Constitutive Relations in Clifford's Geometric Algebra
By
, Vol. 32, 413-428, 2001
Abstract
Constitutive relations for isotropic material media are formulated in a manifestly covariant manner. Clifford's geometric algebra is used throughout. Polarisable,c hiral and Tellegen medium are investigated. The investigation leads to the discovery of an underlying algebraic structure that completely classifies isotropic media. Variational properties are reviewed,sp ecial attention is paid to the imposed constraints on material parameters. Covariant reciprocity condition is given. Finally,dualit y transformations and their relevance to constitutive relations are investigated. Duality is shown to characterise ‘well-behavedness' of medium which has an interesting metric tensor related implication.
Citation
Henri Puska , "Covariant Isotropic Constitutive Relations in Clifford's Geometric Algebra," , Vol. 32, 413-428, 2001.
doi:10.2528/PIER00080116
http://www.jpier.org/PIER/pier.php?paper=00080116
References

1. Lindell, I., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994.

2. Edelen, D. G. B., Applied Exterior Calculus, Wiley, New York, 1985.

3. Post, E. J., Formal Structure of Electromagnetics, North-Holland, Amsterdam, 1962.

4. Burke, W. L., "Manifestly parity invariant electromagnetic theory and twisted tensors," Journal of Mathematical Physics, Vol. 24, 65-69, 1983.
doi:10.1063/1.525603

5. Puska, P., "Clifford algebra and electromagnetic boundary conditions at an interface," Journal of Electromagnetic Waves and Applications, Vol. 14, 11-24, 2000.
doi:10.1163/156939300X00536

6. Hillion, P., "Constitutiv e relations and Clifford algebra in electromagnetism," Advances in Applied Clifford Algebras, Vol. 5, 141-158, 1995.

7. Post, E. J., "The constitutive map and some of its ramifications," Annals of Physics, Vol. 71, 497-518, 1972.
doi:10.1016/0003-4916(72)90129-7

8. Benn, I. M. and R. W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987.

9. Lounesto, P., Clifford Algebras and Spinors, Cambridge University Press,Cam bridge, 1997.

10. Rainich, G. Y., "Electrodynamics in the general relativity theory," Transactions of the American Mathematical Society, Vol. 27, 106-136, 1925.
doi:10.1090/S0002-9947-1925-1501302-6

11. Misner, C. W. and J. A. Wheeler, "Classical physics as geometry," Annals of Physics, Vol. 2, 525-603, 1957.
doi:10.1016/0003-4916(57)90049-0

12. Jauch, J. M. and K. M. Watson, "Phenomenological quantum-electrodynamics," Physical Review, Vol. 74, 950-957, 1948.
doi:10.1103/PhysRev.74.950

13. Papas, C. H., Theory of Electromagnetic Wave Propagation, Dover, Mineola, NY, 1988.

14. Rosenfeld, I., "Quan tenmechanische Theorie der nat¨urlichen optischen Aktivit¨at von Flussigkeiten und Gasen," Zeitschrift fur Physik, Vol. 52, 161-174, 1928.
doi:10.1007/BF01342393

15. Sobczyk, G., "The hyperbolic number plane," The College Mathematics Journal, Vol. 26, 268-280, 1995.
doi:10.1080/07468342.1995.11973712

16. Tellegen, B. D. H., "The gyrator,a new electric network element," Philips Research Reports, Vol. 3, 81-101, 1948.

17. Thirring, W., A Course in Mathematical Physics 2: Classical Field Theory, Springer, New York, 1979.

18. Cartan, H., Formes Differentielles, Hermann, Paris, 1967.

19. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, New York, 1986.

20. de Rham, G., Varietes differentiables, Hermann, Paris, 1960.

21. Urbantke, H., "On integrability properties of SU (2) Yang–Mills fields. I. Infinitesimal part," Journal of Mathematical Physics, Vol. 25, 2321-2324, 1984.
doi:10.1063/1.526402

22. Obukhov, Y. N. and F. W. Hehl, "Spacetime metric from linear electrodynamics," Physics Letters B, Vol. 458, 466-470, 1999.
doi:10.1016/S0370-2693(99)00643-7

23. Lakhtakia, A. and W. S. Weiglhofer, "Are linear, nonreciprocal, biisotropic media forbidden?," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1715-1716, 1994.
doi:10.1109/22.310568

24. Sihvola, A., "Are nonreciprocal bi-isotropic media forbidden indeed?," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, Pt. I, 1995, 2160–2162, 1995; Lakhtakia,A. and W. S. Weiglhofer,“Commen t,” and Sihvola,A.,“Reply to comment,” Ibid., Vol. 43, 2722–2724, 1995.
doi:10.1109/22.414555

25. Riesz, M., Clifford Numbers and Spinors, The Institute of Fluid Dynamics and Applied Mathematics,Lecture Series No. 38, University of Maryland, 1958. Reprinted as facsimile by Kluwer, Dordrecht, 1993.
doi:10.1007/978-94-017-1047-3

26. Jancewicz, B., Multivectors and Clifford Algebra in Electrodynamics, World Scientific, Singapore, 1988.

27. Baylis, W. E., Electrodynamics: A Modern Geometric Approach, Birkhauser, Boston, 1998.

28. Hestenes, D., Space-time Algebra, Gordon & Breach, New York, 1966.

29. Hestenes, D. and G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel, Dordrecht, 1984.
doi:10.1007/978-94-009-6292-7