Vol. 34
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Rigorous Coupled Wave Analysis of Radially and Azimuthally-Inhomogeneous, Elliptical, Cylindrical Systems
By
, Vol. 34, 89-115, 2001
Abstract
Rigorous Coupled Wave Analysis (RCWA) (used for electromagnetic (EM) analysis of planar diffraction gratings) has been applied to solve EM scattering and diffraction problems for spatially inhomogeneous, cylindrical, elliptical systems. The RCWA algorithm and an appropriate method for matching EM boundary conditions in the elliptical system are described herein. Comparisons of the eigenfunctions determined by RCWA (found in spatially homogeneous elliptical regions) and Mathieu functions are presented and shown to agree closely with one another. Numerical results of scattering from a uniform elliptical shell system (excited by an electrical surface current) obtained by using both a Mathieu function expansion method and by using the RCWA algorithm are presented and also shown to agree closely with one another. The RCWA algorithm was used to study EM scattering and diffraction from an elliptical, azimuthally inhomogeneous dielectric permittivity, step profile system. EM field matching and power conservation were shown to hold for this step profile example. A comparison of the EM fields of the step profile elliptical shell example and that of a uniform profile elliptical shell having the same excitation and bulk material parameters (permittivity and permeability) was made and significant differences of the EM fields of the two systems were observed.
Citation
John Jarem , "Rigorous Coupled Wave Analysis of Radially and Azimuthally-Inhomogeneous, Elliptical, Cylindrical Systems," , Vol. 34, 89-115, 2001.
doi:10.2528/PIER01032302
http://www.jpier.org/PIER/pier.php?paper=0103232
References

1. Bhartia, P., L. Shafai, and M. Hamid, "Scattering by an imperfectly conducting conductor with a radially inhomogeneous dielectric coating," Int. J. Electron., Vol. 31, 531-535, 1971.
doi:10.1080/00207217108938250

2. Kishk, A. A., R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Trans. Antennas Propagat., Vol. 40, No. 3, 295-303, 1992.
doi:10.1109/8.135472

3. Elsherbeni, A. Z. and M. Hamid, "Scattering by a cylindrical dielectric shell with inhomogeneous permittivity profile," Int. J. Electronics, Vol. 58, No. 6, 949-962, 1985.
doi:10.1080/00207218508939090

4. Elsherbeni, A. Z. and M. Hamid, "Scattering by a cylindrical dielectric shell with radial and azimuthal permittivity profiles," Proc. 1985 Symp. of Microwave Technology in Industrial Development, (Invited), 77–80, Brazil, July 22–25, 1985.

5. Elsherbeni, A. Z. and M. Tew, "Electromagnetic scattering from a circular cylinder of homogeneous dielectric coated by a dielectric shell with a permittivity profile in the radial and azimuthal directions-even TM case," IEEE Proceedings-1990 Southeastcon, Session 11A1, 996–1000, 1990.

6. Jarem, J. M., "Rigorous coupled wave theory solution of phi-periodic circular cylindrical dielectric systems," Journal of Electromagnetic Waves and Applications, Vol. 11, 197-213, 1997.
doi:10.1163/156939397X00161

7. Jarem, J. M., "Rigorous coupled wave theory of anisotropic, azimuthally-inhomogeneous, cylindrical systems," Progress In Electromagnetics Research, Vol. 19, Chap. 4, 109–127, 1998.

8. Jarem, J. M. and P. P. Banerjee, "Bioelectromagnetics: A rigorous coupled wave analysis of cylindrical biological tissue," Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, (METMBS 00), F. Valatar (Ed.), 467–472, Vol. II, Las Vegas, Nev., June 26–29, 2000.

9. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar grating diffraction," J. Opt. Soc. Amer., Vol. 71, 811-818, 1981.
doi:10.1364/JOSA.71.000811

10. Moharam, M. G. and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Amer., Vol. 72, 1385-1392, 1982.
doi:10.1364/JOSA.72.001385

11. Rokushima, K. and J. Yamakita, "Analysis of anisotropic dielectric gratings," J. Opt. Soc. Amer., Vol. 73, 901-908, 1983.
doi:10.1364/JOSA.73.000901

12. Moharam, M. G. and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Amer., Vol. 73, 1105-1112, 1983.
doi:10.1364/JOSA.73.001105

13. Glytsis, E. N. and T. K. Gaylord, "Rigorous three-dimensional coupled-wave diffraction analysis of single cascaded anisotropic gratings," J. Opt. Soc. Amer. B, Vol. 4, 2061-2080, 1987.
doi:10.1364/JOSAA.4.002061

14. Jarem, J. M. and P. Banerjee, "An exact, dynamical analysis of the Kukhtarev equations in photoretractive barium titanate using rigorous wave coupled wave diffraction theory," J. Opt. Soc. Amer. A, Vol. 13, No. 4, 819-831, April 1996.
doi:10.1364/JOSAA.13.000819

15. Jarem, J. M., "A rigorous coupled-wave theory and crosseddiffraction grating analysis of radiation and scattering from threedimensional inhomogeneous objects," IEEE Transactions on Antennas and Propagation, Vol. 5, No. 46, 740-741, May 1998.
doi:10.1109/8.668922

16. Jarem, J. M., "Rigorous coupled-wave-theory analysis of dipole scattering from a three-dimensional, inhomogeneous, spherical dielectric and permeable system," IEEE Microwave Theory and Techniques, Vol. 45, No. 8, 1193-1203, Aug. 1997.
doi:10.1109/22.618407

17. Jarem, J. M. and P. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, Marcel Dekker, Inc., 2000.
doi:10.1201/9780203908112

18. Bowman, J. J., T. B. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Chap. 3. “The Elliptic Cylinder”, 129–180, Hemisphere Publishing Corp., New York, N.Y., revised printing, 1987.

19. Sebak, A. R., "Scattering from Dielectric-Coated Impedance elliptic cylinder," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1574-1580, Oct. 2000.
doi:10.1109/8.899674

20. Abramowitz, M. and I. Stegum, Handbook of Mathematical Functions, Chap. 20, “Mathieu Functions”, Dover publications, New York, N.Y., 1972.

21. Zhang, S. and J. Jin, "FORTRAN routines for computation of special functions,", Programs: “MTU12,MTU0,FCOEF,CVF,CVA2” at Web Site http://irislee3.ece.uiuc.edu/˜jjin/routines/routines.html, Mar. 8, 01. (Programs associated with the book Computation of Special Functions, John Wiley and Sons. Inc.).