Vol. 34
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Image Reconstruction of Buried Dielectric Cylinders by TE Wave Illumination
By
, Vol. 34, 271-284, 2001
Abstract
The inverse scattering of buried dielectric cylinders by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in one half space and scatter a group of unrelatedTE waves incident from another half space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructedthrough simple matrix operations. The algorithm is basedon the moment methodandthe unrelatedillumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Goodreconstruction is obtainedev en in the presence of additive random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.
Citation
C.-C. Chiu Chun Lin , "Image Reconstruction of Buried Dielectric Cylinders by TE Wave Illumination," , Vol. 34, 271-284, 2001.
doi:10.2528/PIER01060603
http://www.jpier.org/PIER/pier.php?paper=0106063
References

1. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Numerical electromagnetic inverse-scattering solution for two-dimensional infinite dielectric cylinders buried in a lossy half-space," IEEE Trans. Antennas Propagat., Vol. 41, 352-356, Feb. 1993.
doi:10.1109/8.247757

2. Chiu, C. C. and Y. M. Kiang, "Inverse scattering of a buried conducting cylinder," Inv. Prob., Vol. 7, 187-202, April 1991.
doi:10.1088/0266-5611/7/2/004

3. Chiu, C. C. and C. P. Huang, "Inverse scattering of dielectric cylinders buried in a half space," Microwave and Optical Technology Letters, Vol. 13, 96-99, Oct. 1996.
doi:10.1002/(SICI)1098-2760(19961005)13:2<96::AID-MOP12>3.0.CO;2-7

4. Rekanos, I. T. and T. D. Tsiboukis, "A finite element-basedtec hnique for microwave imaging of two-dimensional objects," IEEE Transactions on Instrumentation and Measurement, Vol. 49, 234-239, April 2000.
doi:10.1109/19.843055

5. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Inverse scattering problems with multifrequency data: reconstruction capabilities andsolution strategies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 1749-1756, July 2000.
doi:10.1109/36.851974

6. Park, C. S. and B. S. Jeong, "Reconstruction of a high contrast andlarge object by using the hybridalgorithm combining a Levenberg-Marquardt algorithm and a genetic algorithm," IEEE Transactions on Magnetics, Vol. 35, 1582-1585, May 1999.
doi:10.1109/20.767278

7. Ney, M. M., A. M. Smith, and S. S. Stuchly, "A solution of electromagnetic imaging using pseudoinverse transformation," IEEE Trans. Med. Imag., Vol. 3, 155-162, Dec. 1984.
doi:10.1109/TMI.1984.4307675

8. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An approach to microwave imaging using a multiview Moment Methodsolution for a two-dimensional infinite cylinder," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 1062-1067, June 1991.
doi:10.1109/22.81683

9. Wang, W. and S. Zhang, "Unrelatedillumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 40, 1292-1296, Nov. 1992.

10. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propagat., Vol. 45, 203-215, Feb. 1997.
doi:10.1109/8.560338

11. Joachimowicz, N., C. Pichot, and J. P. Hugonin, "Inverse scattering: an Iterative numerical methodfor electromagnetic imaging," IEEE Trans. Antennas Propagat., Vol. 39, 1742-1752, Dec. 1991.
doi:10.1109/8.121595

12. Otto, G. P. and W. C. Chew, "Inverse scattering of Hz waves using local shape function imaging: a T-Matrix formulation," Int. J. Imaging Syst. Technol., Vol. 5, 22-27, 1994.
doi:10.1002/ima.1850050104

13. Chiu, C. C. and P. T. Liu, "Image reconstruction of a complex cylinder illuminated by TE waves," IEEE Trans. Microwave Theory Tech., Vol. 44, 1921-1927, Oct. 1996.
doi:10.1109/22.539950

14. Chou, C. P. and Y. W. Kiang, "Inverse scattering of dielectric cylinders by a cascaded TE-TM method," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1923-1930, Oct. 1999.
doi:10.1109/22.795065

15. Kooij, B. J., "Contrast source inversion of a buriedob ject in TE-scattering," Antennas and Propagation Society International Symposium, Vol. 2, 714-717, June 1998.

16. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

17. Richmond, J. H., "TE-wave scattering by a dielectric cylinder of arbitrary cross-session shape," IEEE Trans. Antennas Propagat., Vol. 14, 460-464, July 1966.
doi:10.1109/TAP.1966.1138730