Vol. 34
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
EM Fields Inside a Prolate Spheroid Due to a Thin Circular Loop: a Higher-Order Perturbation Approach
By
, Vol. 34, 219-252, 2001
Abstract
This paper presents an alternative analysis of obtaining radiated electromagnetic (EM) fields in a dielectric prolate spheroid using the perturbation technique. A circular loop antenna is used as a radiator on the top of the spheroid. The spheroid is approximated by the first a few terms of the Taylor series expansion (higher-order approximation), and coefficients for transmission and scattered EM fields are found using the perturbation method where the coefficients are also expanded into Taylor series and determined by matching the boundary conditions on the spheroidal dielectric surface. After the approximated coefficients and EM fields are obtained, validity of the approach is discussed and limitations are also addressed.
Citation
L.-W. Li M. S. Yeo M.-S. Leong , "EM Fields Inside a Prolate Spheroid Due to a Thin Circular Loop: a Higher-Order Perturbation Approach," , Vol. 34, 219-252, 2001.
doi:10.2528/PIER01062201
http://www.jpier.org/PIER/pier.php?paper=0106221
References

1. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.

2. Wang, D. S. and P. W. Barber, "Scattering by inhomogeneous nonspherical objects," Appl. Opts., Vol. 18, No. 8, 1190-1197, April 1979.
doi:10.1364/AO.18.001190

3. Wang, D. S., M. Kerker, and H. W. Chew, "Raman and fluorescent scattering by molecules embedded in dielectric spheroids," Appl. Opts., Vol. 19, No. 14, 2315-2328, July 1979.
doi:10.1364/AO.19.002315

4. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Scattering and absorption characteristics of lossy dielectric, chiral, non-spherical objects," Appl. Opt., Vol. 24, 4146-4154, 1985.
doi:10.1364/AO.24.004146

5. Michalski, K. A., "The mixed-potential electric field integral equation for objects in layered media," Arch. Elek. Ubertragung., Vol. 39, 317-322, 1985.

6. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propagat., Vol. 34, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

7. Lindell, I. V. and M. P. Silverman, "Plane-wave scattering from a nonchiral object in a chiral environment," J. Opt. Soc. Am. A, Vol. 14, No. 1, 79-90.
doi:10.1364/JOSAA.14.000079

8. Li, L.-W., M.-S. Leong, and Y. Huang, "Electromagnetic radiation of antennas in the presence of an arbitrarily shaped dielectric object: Green dyadics and their applications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, 84-90, January 2001.
doi:10.1109/TAP.2001.910539

9. Sebak, A. A. and L. Shafai, "Performance of various integral equation formulations for numerical solutions of scattering by impedance objects," Can. J. Phys., Vol. 62, 605-615, 1984.
doi:10.1139/p84-082

10. Sebak, A. and L. Shafai, "Scattering by a two-layer spherical dielectric object in a lossy medium illuminated by a loop carrying an arbitrary azimuthal mode," Canadian Journal of Physics, Vol. 67, No. 6, 617-623, June 1989.
doi:10.1139/p89-113

11. Sinha, B. P. and A. R. Sebak, "Scattering by a conducting spheroidal object with dielectric coating at axial incidence," IEEE Trans. Antennas Propagat., Vol. 40, No. 3, 268-274, 1992.
doi:10.1109/8.135468

12. Sherman, J. B., "Circular loop antennas with uniform current," Proc. IRE, Vol. 32, 534-537, Sept. 1944.
doi:10.1109/JRPROC.1944.233067

13. Lindsay, Jr., J. E., "A circular loop antenna with nonuniform current distribution," IRE Trans. Antennas Propagat., Vol. 8, No. 4, 439-441, July 1960.
doi:10.1109/TAP.1960.1144866

14. Martin, Jr., E. J., "Radiation fields of circular loop antennas by a direct integration process," IRE Trans. Antennas Propagat., Vol. 8, No. 1, 105-107, Jan. 1960.
doi:10.1109/TAP.1960.1144811

15. Wu, T. T., "Theory of the thin circular loop antenna," J. Math. Phys., Vol. 3, 1301-1304, 1962.
doi:10.1063/1.1703875

16. Rao, B. R., "Far field patterns of large circular loop antennas: Theoretical and experimental results," IEEE Trans. Antennas Propagat., Vol. 16, No. 2, 269-270, Mar. 1968.
doi:10.1109/TAP.1968.1139132

17. Overfelt, P. L., "Near fields of the constant current thin circular loop antenna of arbitrary radius," IEEE Trans. Antennas Propagat., Vol. 44, No. 2, 166-171, 1996.
doi:10.1109/8.481643

18. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Trans. Antennas Propagat., Vol. 44, No. 2, 157-165, 1996.
doi:10.1109/8.481642

19. Li, L.-W., M.-S. Leong, P.-S. Kooi, and T.-S. Yeo, "Exact solutions of electromagnetic fields in both near and far zones radiated by thin circular loop antennas: A general representation," IEEE Trans. Antennas Propagt., Vol. 45, No. 12, 1741-1748, December 1997.
doi:10.1109/8.650191

20. Li, L.-W., C.-P. Lim, and M.-S. Leong, "Method of moments analysis of electrically large circular-loop antennas: Nonuniform currents," IEE Proceedings on Microwave, Antennas and Propagation, Vol. 146, No. 6, 416-420, November–December 1999.
doi:10.1049/ip-map:19990784

21. Li, L.-W., M.-S. Yeo, and J. A. Kong, "Method of moments analysis of EM fields in a multilayered spheroid radiated by a thin circular loop antenna," IEEE Transactions on Antennas and Propagation, October 12, 2000.

22. Uzunoglu, N. K. and E. A. Angelikas, "Field distributions in a three-layer prolate spheroidal human body model for a loop antenna irradiation," IEEE Trans. Antenna and Propagat., Vol. 35, 1180-1185, 1987.
doi:10.1109/TAP.1987.1143991

23. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd edition, John Wiley & Sons, New York, 1997.

24. Li, L.-W., X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, John Wiley-Interscience, New York, 2001.
doi:10.1002/0471221570

25. Li, L.-W., T.-S. Yeo, P.-S. Kooi, and M.-S. Leong, "Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions," Progress In Electromagnetics Research, J. A. Kong (Ed.), Vol. 18, 127–150, EMW Publishing, Cambridge, Boston, 1998. The abstract appears in J. Electromagn. Waves Applic., Vol. 12, No. 6, 709–711, June 1998.

26. Li, L.-W., T.-S. Yeo, and M.-S. Leong, "Bistatic scattering and backscattering of electromagnetic waves by conducting and coated dielectric spheroids: A new analysis using Mathematica package," Progress In Electromagnetics Research, Vol. 30, 251-271, EMW Publishing, Cambridge, Boston, 2001, Its Abstract appears in Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 21–23, 2001.

27. Li, L.-W., M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex argument: A review with an algorithm," Physical Review E, Vol. 58, No. 5, 6792-6806, November 1998.
doi:10.1103/PhysRevE.58.6792

28. Li, L.-W., M.-S. Leong, P.-S. Kooi, and T.-S. Yeo, "Spheroidal vector eigenfunction expansion of dyadic Green’s functions for a dielectric spheroid," IEEE Trans. Antennas Propagt., Vol. 49, No. 4, 645-659, April 2001.

29. Li, L.-W., X. K. Kang, M.-S. Leong, P.-S. Kooi, and T.-S. Yeo, "Electromagnetic dyadic Green’s functions for multilayered spheroidal structures: I - Formulation," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 532-541, March 2001.
doi:10.1109/22.910558

30. Li, L.-W., P.-S. Kooi, M.-S. Leong, T.-S. Yeo, and M. Z. Gao, "Microwave attenuation by realistically distorted raindrops: Part I–Theory," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 811-822, August 1995.
doi:10.1109/8.402200

31. Li, L.-W., M.-S. Leong, Y. L. Seow, T.-S. Yeo, and P.-S. Kooi, "Rainfall microwave attenuation of spherical raindrops: An efficient TCS formula using 3-D fitting," Microwave Opt. Tech. Lett., Vol. 17, No. 2, 121-125, February 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<121::AID-MOP12>3.0.CO;2-B

32. Li, L.-W., T.-S. Yeo, P.-S. Kooi, and M.-S. Leong, "An efficient calculational approach to evaluation of microwave specific attenuation," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1220-1229, August 2000.
doi:10.1109/8.884490

32. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, 2nd edition, IEEE Press, Piscataway, New Jersey, 1994.

34. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, Piscataway, New Jersey, 1991.

35. Stratton, J. A., Electromagnetic Theory, McGraw-Will, New York, 1941.