Vol. 41
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Dispersion Diagrams of Bloch Modes Applied to the Design of Directive Sources
By
, Vol. 41, 61-81, 2003
Abstract
We present an original study which makes use of a convenient representation of the dispersion diagrams of Bloch modes for the design of angular selective sources. These diagrams provide us all the pertinent information about the radiative properties of the photonic crystal, and a guideline to optimize the structure in order to obtain the suitable properties. We apply these tools in two cases: when the radiated field propagates normally to the device, and also for an off-axis radiating device. Several numerical examples obtained from a rigorous numerical method show the relevance of this approach.
Citation
, "Dispersion Diagrams of Bloch Modes Applied to the Design of Directive Sources," , Vol. 41, 61-81, 2003.
doi:10.2528/PIER02010803
http://www.jpier.org/PIER/pier.php?paper=0201083
References

1. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 45, 185-187, 1997.
doi:10.1109/8.554261

2. Sigalas, M. M., R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs- Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band-gap crystals- Experiment and simulation," Microwave and Optical Technology Letters, Vol. 15, 153-158, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<153::AID-MOP10>3.0.CO;2-8

3. Leung, W. Y., R. Biswas, S. D. Cheng, M. M. Sigalas, J. S. McCalmont, G. Tuttle, and K. M. Ho, "Slot antennas on photonic band gap crystals," IEEE Trans. on Antennas and Propagat., Vol. 45, 1569-1570, 1997.
doi:10.1109/8.633871

4. Smith, G. S., M. P. Kesler, and J. G. Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field pattern, and input impedance," Microwave and Optical Technology Letters, Vol. 21, 191-196, 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

5. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

6. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patch antenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2131-2138, 1999.
doi:10.1109/22.798009

7. Gonzalo, R., B. Martinez, P. de Maagt, and M. Sorolla, "Improved patch-antenna performance by using photonic-bandgap substrates," Microwave and Optical Technology Letters, Vol. 24, 213-215, 2000.
doi:10.1002/(SICI)1098-2760(20000220)24:4<213::AID-MOP1>3.0.CO;2-2

8. Thevenot, M., C. Cheype, A. Reinex, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2115-2122, 1999.
doi:10.1109/22.798007

9. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
doi:10.1063/1.371905

10. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152

11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: the triangular lattice," Phys. Rev. B, Vol. 44, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565

12. Sözuer, H. S., J. W. Haus, and R. Inguva, "Photonic bands: convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, 13962-13972, 1992.
doi:10.1103/PhysRevB.45.13962

13. Joannopoulos, J., R. Meade, and J. Winn, Photonic Crystals, Princeton University Press, 1995.

14. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B, Vol. 55, 15942-8437, 1997.
doi:10.1103/PhysRevB.55.15942

15. Moroz, A. and C. Sommers, "Photonic band gaps of threedimensional face-centered cubic lattices," J. Phys.: Condens. Matter, Vol. 11, 997-1008, 1999.
doi:10.1088/0953-8984/11/4/007

16. Botten, L. C., N. A. Nicorovici, R. C. McPhedran, C.M. de Sterke, and A. A. Asatryan, "Photonic band structure calculations using scattering matrices," Phys. Rev. E, Vol. 64, 2001.
doi:10.1103/PhysRevE.64.046603

17. Botten, L. C., R. C. McPhedran, N. A. Nicorovici, A. A. Asatryan, C. M. de Sterke, P. A. Robinson, K. Busch, G. H. Smith, and T. N. Langtry, "Rayleigh multipole methods for photonic crystal calculations," Progress In Electromagnetics Research, Vol. 41, 21-60.
doi:10.2528/PIER02010802

18. Tayeb, G. and D. Maystre, "Rigorous theoretical study of finite size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, 3323-3332, 1997.

19. Yeh, P., "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am., Vol. 69, 742-756, 1979.

20. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A, Vol. 17, 1012-1020, 2000.

21. Petit, R. (Ed.), Electromagnetic Theory of Gratings, Springer- Verlag, 1980.

22. Villeneuve, P., S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency," Phys. Rev. B, Vol. 54, 7837-7842, 1996.
doi:10.1103/PhysRevB.54.7837

23. Sentenac, A., J. J. Greffet, and F. Pincemin, "Structure of the electromagnetic field in a slab of photonic crystal," J. Opt. Soc. Am. B, Vol. 14, 339-347, 1997.

24. Yuan, Z., J. W. Haus, and K. Sakoda, "Eigenmode symmetry for simple cubic lattices and the transmission spectra," Optics Express, Vol. 3, 19-27, 1998.

25. Hall, R. C., R. Mittra, and K. M. Mitzner, "Analysis of multilayered periodic structures using generalized scattering matrix theory," IEEE Trans. Ant. Prop., Vol. 36, 511-517, 1988.
doi:10.1109/8.1140

26. Neviere, M. and F. Montiel, "Deep gratings: a combination of the differential theory and the multiple reflection series," Optics Comm., Vol. 108, 1-7, 1994.
doi:10.1016/0030-4018(94)90206-2

27. Montiel, F. and M. Neviere, "Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm," J. Opt. Soc. Am. A, Vol. 11, 3241-3250, 1994.

28. Li, L., "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings," J. Opt. Soc. Am. A, Vol. 11, 2829-2836, 1994.

29. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, 1024-1035, 1996.

30. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, 2526-2538, 1994.