1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 1987. Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 1987. Google Scholar
3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
4. For a recent review, see articles in, see articles in, Photonic Crystals and Light Localization in the 21st Century, 2001.
5. Wanke, M. C., O. Lehmann, K. Muller, Q. Wen, and M. Stuke, "Laser rapid prototyping of photonic band-gap microstructures," Science, Vol. 275, 1997. Google Scholar
6. Temelkuran, B., E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett., Vol. 72, 1998. Google Scholar
7. Temelkuran, B. and E. Ozbay, "Experimental demonstration of photonic crystal based waveguides," Appl. Phys. Lett., Vol. 74, 1999. Google Scholar
8. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal based resonant antenna with a very high directivity," J. Appl. Phys., Vol. 87, 2000. Google Scholar
9. Lin, S. Y., J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelength," Nature (London), Vol. 394, 1998. Google Scholar
10. Fleming, J. G. and S.-Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm," Opt. Lett., Vol. 24, 1999. Google Scholar
11. Noda, S., K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science, Vol. 289, 2000. Google Scholar
12. Villeneuve, P. R., S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett., Vol. 67, 1995. Google Scholar
13. Gourley, P. L., J. R. Wendt, G. A. Vawter, T. M. Brennan, and B. E. Hammons, "Optical properties of two dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors," Appl. Phys. Lett., Vol. 64, 1994. Google Scholar
14. Dowling, J. P., M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: a new approach to gain enhancement," J. Appl. Phys., Vol. 75, 1994. Google Scholar
15. Yablonovitch, E., T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett., Vol. 67, 1991. Google Scholar
16. Painter, O., R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science, Vol. 284, 1999. Google Scholar
17. Mekis, A., M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Jaonnopoulos, "Lasing mechanism in two-dimensional photonic crystal lasers," Appl. Phys. A: Mater. Sci. Process, Vol. 69, 1999. Google Scholar
18. Bayindir, M., B. Temelkuran, and E. Ozbay, "Tight-binding description of the coupled defect modes in three-dimensional photonic crystals," Phys. Rev. Lett., Vol. 84, 2000. Google Scholar
19. Bayindir, M., B. Temelkuran, and E. Ozbay, "Propagation of photons by hopping: a waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals," Phys. Rev. B, Vol. 61, 2000. Google Scholar
20. Ho, K. M., C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layerby- layer periodic structures," Solid State Commun., Vol. 89, 1994. Google Scholar
21. Ozbay, E., "Layer-by-layer photonic band gap crystals: from microwave to the far-infrared," J. Opt. Soc. Am. B, Vol. 13, 1996. Google Scholar
22. Ozbay, E., A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B, Vol. 50, 1994. Google Scholar
23. Ozbay, E. and B. Temelkuran, "Reflection properties and defect formation in photonic crystals," Appl. Phys. Lett., Vol. 69, 1996. Google Scholar
24. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett., Vol. 74, 1999. Google Scholar
25. de Lustrac, A., F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "Experimental demonstration of electrically controllable photonic crystals at centimenter wavelengths," Appl. Phys. Lett., Vol. 75, 1999. Google Scholar
26. Mekis, A., J. C. Chen, I. Kurland, S. Fan, P. R. Velleneuve, and J. D. Joannopoulos, "Hight transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett., Vol. 77, 1996. Google Scholar
27. Lin, S.-Y., E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science, Vol. 282, 1998. Google Scholar
28. Sigalas, M. M., R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, "Waveguide bends in threedimensional layer-by-layer photonic bandgap materials," Micro. Opt. Tech. Lett., Vol. 23, 1999. Google Scholar
29. Baba, T., N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett., Vol. 35, 1999. Google Scholar
30. Tokushima, M., H. Kosaka, A. Tomita, and H. Yamada, "Lightwave propagation through a 120â—¦ sharply bent single-line-defect photonic crystal waveguide," Appl. Phys. Lett., Vol. 76, 2000. Google Scholar
31. Loncar, M., D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett., Vol. 77, 2000. Google Scholar
32. Johnson, S. G., P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B, Vol. 62, 2000. Google Scholar
33. Noda, S., A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature (London), Vol. 407, 2000. Google Scholar
34. Jackson, J. D., Classical Electrodynamics, 2nd ed., 1975.
35. Stefanou, N. and A. Modinos, "Impurity bands in photonic insulators," Phys. Rev. B, Vol. 57, 12127, 1998. Google Scholar
36. de Sterke, C. M., "Superstructure gratings in the tight-binding approximation," Phys. Rev. E, Vol. 57, 1998. Google Scholar
37. Lidorikis, E., M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, "Tight-binding parametrization for photonic band gap materials," Phys. Rev. Lett., Vol. 81, 1998. Google Scholar
38. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis,'' Opt. Lett., Vol. 24, No. 711, 1999; Y. Xu, R. K. Lee, and A. Yariv, Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide," J. Opt. Soc. Am. B, Vol. 17, No. ``Coupled-resonator optical waveguide: a proposal and analysis,'' Opt. Lett., Vol. 24, 711, 1999; Y. Xu, R. K. Lee, and A. Yariv, ``Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide, 2000. Google Scholar
39. Robertson, W. M., G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Measurement of photonic band structure in a two-dimensional periodic dielectric array," Phys. Rev. Lett., Vol. 68, 1992. Google Scholar
40. Sakoda, K., "Enhanced light ampli cation due to group-velocity anomaly peculiar to two-and three-dimensional photonic crystals," Opt. Express, Vol. 4, 1999. Google Scholar
41. Unlu, M. S. and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys., Vol. 78, 1995. Google Scholar
42. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, 1993. Google Scholar
43. Sigalas, M. M., R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs- Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic bandgap crystals: experiment and simulation," Micro. Opt. Tech. Lett., Vol. 15, 1997. Google Scholar
44. Brown, E. R. and O. B. McMahon, "High zenithal directivity from a dipole antenna on a photonic crystal," Appl. Phys. Lett., Vol. 68, 1996. Google Scholar
45. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patchantenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999. Google Scholar
46. Poilasne, G., P. Pouliguen, K. Mahdjoubi, J. Lenormand, C. Terret, and Ph. Gelin, "Theoretical study of grating lobes reduction using metallic photonic bandgap materials (MPBG)," Micro. Opt. Tech. Lett., Vol. 18, 1998. Google Scholar
47. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999. Google Scholar
48. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, 1984.
49. Schubert, E. F., N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, "Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ = 940 nm," Appl. Phys. Lett., Vol. 63, 1993. Google Scholar