1. Birks, T. A., J. C. Knight, and P. St. J. Russell, "Endlessly singlemode photonic crystal fiber," Optics Letters, Vol. 22, No. 13, 961-963, 1997. Google Scholar
2. Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, "Large mode area photonic crystal fibre," Electronics Letters, Vol. 34, No. 13, 1347-1348, 1998.
doi:10.1049/el:19980965 Google Scholar
3. Knight, J. C., T. A. Birks, P. St. J. Russell, and J. P. de Sandro, "Properties of photonic crystal fiber and the effective index model," JOSA A, Vol. 15, 748, 1998. Google Scholar
4. Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Optical Fiber Technology, 1999. Google Scholar
5. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, No. 11, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476 Google Scholar
6. Whitney, H., Geometric Integration Theory, Princeton Univ. Press, 1957.
7. Guenneau, S., A. Nicolet, F. Zolla, C. Geuzaine, and B. Meys, "A finite element formulation for spectral problems in optical fibers," Compel, Vol. 20, No. 1, 120-131, 2001. Google Scholar
8. Bonnet, A.-S., "Analyse mathematique de la propagation des modes guides dans les fibres optiques," Ph.D. Thesis, 1988. Google Scholar
9. Reed, M. and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Vol. 1, 1978.
10. Bossavit, A., "Solving Maxwell equations in a closed cavity, and the question of spurious modes," IEEE Transactions on Magnetics, Vol. 26, No. 2, 1990.
doi:10.1109/20.106414 Google Scholar
11. Bossavit, A., "Electromagnetisme en vue de la modelisation," Mathematiques et Applications, Vol. 14, 1993. Google Scholar
12. Nicolet, A., J-F. Remacle, B. Meys, A. Genon, and W. Legros, "Transformation methods in computational electromagnetism," J. Appl. Phys., Vol. 75, No. 10, 1994.
doi:10.1063/1.355500 Google Scholar
13. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Amer. J. Math., Vol. 98, 79-104, 1976.
doi:10.2307/2373615 Google Scholar
14. Dular, P., C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Transactions on Magnetics, Vol. 34, No. 5, 3395-3398, 1998.
doi:10.1109/20.717799 Google Scholar
15. Meys, B., "Modelisation des champs electromagnetiques aux hyperfrequences par la methode des elements finis, application au probleme du chauffage dielectrique," Ph.D. Thesis, 1999. Google Scholar
16. Saad, Y., Numerical Methods for Large Eigenvalue Problems, Manchester Univ. Press, 1991.
17. Geradin, M. and D. Rixen, Mechanical Vibrations: Theory and Applications to Structural Dynamics, John Wiley and Son, 1997.
18. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.
19. Petit, R., Ondes Electromagnetiques en Radioelectricite et en Optique, Masson, 1993.
20. Vassallo, C., Theorie des Guides d'Ondes en Electromagnetisme, CNET, 1985.
21. Guenneau, S., "Homogeneisation des quasi-cristauxet analyse des modes dans des fibres optiques de type cristal photonique," Ph.D. Thesis, 2001. Google Scholar