Vol. 39
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Simple Time-Domain Expressions for Prediction of Crosstalk on Coupled Microstrip Lines
By
, Vol. 39, 147-175, 2003
Abstract
This paper presents an improved variant of timedomain method for predicting crosstalk on parallel-coupled matched terminated microstrip lines. This method derives simple near-end and far-end time-domain crosstalk expressions which are applicable to lossless case with significant harmonic frequency < 1 GHz. The expressions are in polynomial form with geometrical dimensions of the structure and stimulus information as the only required entry parameters. They are simpler as compared to other methods because the difficult-to-determine distributed RLCG electrical parameters of the coupled lines are not needed. A look-up table for the polynomial coefficients is generated for easy application of this technique. The expressions are applicable for board thickness of 4-63 mils, 30-70Ω line characteristic impedance, 0.5W-4.0W (where W is the line width) inner edge to edge separation, and 3-5 dielectric constant. For significant harmonic frequency > 1 GHz, the effect of both losses and dispersion on the crosstalk levels is accounted for by investigating the gradient of the distorted driving signal. The peak crosstalk levels are then predicted by modifying the time derivative term in the lossless expressions. In addition, the far-end crosstalk is proved to saturate at half of the magnitude of the driving signal entering the active line. The saturation phenomenon is studied from the viewpoint of difference in odd-mode and even-mode propagation velocities.
Citation
"Simple Time-Domain Expressions for Prediction of Crosstalk on Coupled Microstrip Lines," , Vol. 39, 147-175, 2003.
doi:10.2528/PIER02060902
References

1. Feller, A.H. R. Kaupp, and J. J. Digiacoma, "Crosstalk and reflections in high-speed digital systems," Fall Joint Computer Conf. Proceeding, 511-525, 1965.

2. Johnson, H. W. and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, 1993.

3. Sohn, Y. S., J. C. Lee, H. J. Park, and S. I. Cho, "Empirical equations for electrical parameters of coupled microstrip lines with one side exposed to air," IEE Electronics Letters, Vol. 35, No. 11, 906-907, 1999.
doi:10.1049/el:19990599

4. Montrose, M. I., Printed Circuit Board Design Techniques for EMC Compliance, 2nd Edition, IEEE Press, 2000.

5. Chang, C. S., "An overview of computer packaging architecture and electrical design," Southern Tier Technical Conf., 239-257, 1990.
doi:10.1109/STIER.1990.324651

6. Sengupta, M., S. Lipa, P. Franzon, and M. Steer, "Crosstalk driven routing advice," Electronic Components and Technology Conf., 687-694, 1994.

7. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, 1993.

8. Edwards, T., Foundations for Microstrip Circuit Design, 2nd Edition, John Wiley & Sons, 1998.

9. Agrawal, A. P., C. S. Chang, and D. A. Gernhart, "Design considerations for digital circuit interconnections in a multilayer printed circuit board," IEEE International Conf. on Computer Design: VLSI in Computers and Processors, 472-478, 1991.

10. Leung, T. and C. A. Balanis, "Attenuation distortion of transient signals in microstrip," IEEE Trans. on Microwave Theory Tech., Vol. 36, No. 4, 765-768, 1988.
doi:10.1109/22.3585

11. Roden, J. A., C. R. Paul, W. T. Smith, and S. D. Gedney, "Finitedifference, time-domain analysis of lossy transmission lines," IEEE Trans. on Electromagnetic Compatibility, Vol. 38, No. 1, 15-24, 1996.
doi:10.1109/15.485691

12. Kung, F. W. L. and H. T. Chuah, "System modeling of highspeed digital printed circuit board using SPICE," Progress in Electromagnetics Research, Vol. 20, 179-212, 1998.
doi:10.2528/PIER97111900

13. Hammerstad, E. O. and F. Bekkadal, "A microstrip handbook," ELAB Report, 98-110, 1975.

14. Kirschning, M. and R. H. Jansen, "Accurate model for effective dielectric constant of microstrip with validity up to milimetre-wave frequencies," IEE Electronics Letters, 272-273, 1982.
doi:10.1049/el:19820186