Vol. 37
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Small-Slope Approximation Method: a Further Study of Vector Wave Scattering from Two-Dimensional Surfaces and Comparison with Experimental Data
By
, Vol. 37, 251-287, 2002
Abstract
This paper deals with the calculation of the scattering cross-section of polarized electromagnetic plane waves from 2-D metallic and dielectric randomly rough surfaces. The scattering crosssection of object is calculated by the Local Small Slope Approximation (SSA), the scattering cross-section is then compared with experimental data. In this paper, second order terms of the SSA method have been numerically implemented in order to obtain accurate results for a large range of slope. In this paper, we consider scattered and incident wave vectors in arbitrary directions, metallic and dielectric materials with complexp ermittivity. Surfaces are considered with Gaussian probability density functions for surface heights and Gaussian or non-Gaussian correlation functions. The coherent and incoherent components of the electromagnetic intensity for cross- and co-polarization are calculated in the bistatic case and we give several comparisons of the theory with measured data.
Citation
Gerard Berginc , "Small-Slope Approximation Method: a Further Study of Vector Wave Scattering from Two-Dimensional Surfaces and Comparison with Experimental Data," , Vol. 37, 251-287, 2002.
doi:10.2528/PIER02070603
http://www.jpier.org/PIER/pier.php?paper=0207063
References

1. Tsang, L., J. A. Kong, K. H. Ding, and C. A. Ao, Scattering of Electromagnetic Waves, Numerical Simulations, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224308

2. Bourlier, C., G. Berginc, and J. Saillard, "Theoretical study of the Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect: application to the backscattering coefficient for a perfectly-conducting surface," Waves in Random Media, Vol. 11, 91-118, 2001.
doi:10.1088/0959-7174/11/2/302

3. Bourlier, C., G. Berginc, and J. Saillard, "Bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase and scalar approximation with shadowing effect: comparisons with experiments and application to the sea surface," Waves in Random Media, Vol. 11, 119-147, 2001.
doi:10.1088/0959-7174/11/2/303

4. Fitzgerald, R. M. and A. A. Maradudin, "A reciprocal phaseperturbation theory for rough surface scattering," Waves Random Media, Vol. 4, 275-296, 1994.
doi:10.1088/0959-7174/4/3/004

5. Bahar, E., "Full wave solutions for the depolarization of the scattered radiation fields by rough surfaces of arbitrary slope," IEEE Trans. Antennas Propag., Vol. 29, 443-454, 1981.
doi:10.1109/TAP.1981.1142604

6. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Boston, MA, 1994.

7. Hsieh, G. Y., A. K. Fung, G. Nesti, A. J. Sieber, and P. Coppo, "A further study of the IEM surface scattering model," IEEE Geos. Rem. Sens., Vol. 35, No. 4, 901-909, 1997.
doi:10.1109/36.602532

8. Hsieh, G. Y., "Effects of bistatic multiple surface scattering from perfectly conducting surface," Electromagnetics, Vol. 20, No. 2, 99-124, 2000.
doi:10.1080/027263400308302

9. Hsieh, G. Y., "Prediction of IEM model for backscattering enhancement," Electromagnetics, Vol. 20, No. 3, 205-231, 2000.
doi:10.1080/027263400308258

10. Jin, Y.-Q., "Multiple scattering from a randomly rough surface," J. Appl. Phys., Vol. 63, No. 5, 1286-1292, 1988.
doi:10.1063/1.339953

11. Jin, Y.-Q., "Backscattering enhancement from a randomly rough surface," Physical Review, Vol. B42, No. 16, 9819-9829, 1990.
doi:10.1103/PhysRevB.42.9819

12. Ishimaru, A. and S. Chen, "Scattering from very rough metallic and dielectric surfaces: a theory based on a modified Kirchhoff approximation," Waves Random Media, Vol. 1, S91-S107, 1991.
doi:10.1088/0959-7174/1/3/008

13. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, "Polarimetric scattering theory for high slope rough surfaces," Progress In Electromagnetic Research, J. A. Kong (ed.), Vol. 14, 1–36, EMW, 1996.

14. Alvarez-Perez, J. L., "An extension of the IEM/IEMM surface scattering model," Waves Random Media, Vol. 11, 307-330, 2001.

15. Milder, D. M., "An improved formalism for wave from rough surfaces," J. Acoust. Soc. Am., Vol. 89, 529-541, 1991.
doi:10.1121/1.400377

16. Voronovich, A. G., "Small slope approximation in wave scattering by rough surfaces," Sov. Phys.-JETP, Vol. 62, 65-70, 1985.

17. Voronovich, A. G., Wave Scattering from Rough Surfaces, Springer Series on Wave Phenomena, 2nd edition, Springer, Berlin, 1998.

18. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric halfspace," Wave in Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

19. Voronovich, A. G., "Non local small-slope for wave scattering from rough surfaces," Wave in Random Media, Vol. 6, 151-167.

20. Broschat, S. L. and E. I. Thorsos, "An investigation of the small slope approximation for scattering from rough surfaces, Part I," Theory J. Acoust. Soc. Am., Vol. 89, 2082-2093, 1995.

21. Berginc, G., Y. Beniguel, and B. Chevalier, "Small-slope approximation method: higher order contributions for scattering from conducting 3D surfaces," Proceedings of SPIE, P.T. C. Chen, Z.-H. Gu, and A. A. Maradudin (eds.), Rough Surface Scattering and Contamination, Vol. 3784, 207–217, 1999.

22. Chevalier, B. and G. Berginc, "Small-slope approximation method: scattering of a vector wave from 2D dielectric and metallic surfaces with Gaussian and non-Gaussian statistics," Proceedings of SPIE, Z.-H. Gu and A. A. Maradudin (eds.), Scattering and Surface Roughness III, Vol. 4100, 22–32, 2000.

23. Berginc, G. and Y. Beniguel, "Extension of the small-slope approximation method for 3D scattering cross-section calculation of a rough convex object," PIERS Proceedings, Nantes, 582, 1998.

24. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, Wiley Series in Remote Sensing, Wiley Interscience, New York, 2001.
doi:10.1002/0471224278

25. O’Donnel, K. A. and E. R. Mendez, "Experimental study of scattering characterized random surfaces," J. Opt. Soc. Am., Vol. 4, No. 7, 1194-1205, 1987.
doi:10.1364/JOSAA.4.001194

26. Bahar, E. and B. S. Lee, "Radar scatter cross section for twodimensional random rough surfaces — full wave solutions and comparisons with experiments," Wave in Random Media, Vol. 6, 1-23, 1996.
doi:10.1080/13616679609409792

27. Hernandez-Walls, C. E. I. and E. R. Mendez, "Scattering by randomly two-dimensional dielectric surfaces," Proceedings of SPIE, Vol. 3426, 164-170, 1998.

28. Calvo-Perez, O., "Diffusion des ondes electromagnetiques par un film dielectrique rugueux heterogene. Etude experimentale et modelisation,", Ph.D. Thesis, Ecole Centrale de Paris, French, 1999.