1. Shankar, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1064-1074, 2000.
doi:10.1109/8.876325 Google Scholar
2. Jung, B. H. and T. K. Sarkar, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects," Microwave Opt. Technol. Lett., Vol. 34, No. 4, 289-296, 2002.
doi:10.1002/mop.10440 Google Scholar
3. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.
4. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435 Google Scholar
5. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600 Google Scholar
6. Rao, S. M. and T. K. Sarkar, "An alternative version of the time-domain electric field integral equation for arbitrarily shaped conductors," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 831-834, 1993.
doi:10.1109/8.250460 Google Scholar
7. Rao, S. M. and T. K. Sarkar, "An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies," Microwave Opt. Technol. Lett., Vol. 17, No. 5, 321-325, 1998.
doi:10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO;2-6 Google Scholar
8. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679 Google Scholar
9. Jung, B. H. and T. K. Sarkar, "Time-domain electric-field integral equation with central finite difference," Microwave Opt. Technol. Lett., Vol. 31, No. 6, 429-435, 2001.
doi:10.1002/mop.10055 Google Scholar
10. Jung, B. H. and T. K. Sarkar, "An accurate and stable implicit solution for transient scattering and radiation from wire structures," Microwave Opt. Technol. Lett., Vol. 34, No. 5, 354-359, 2002.
doi:10.1002/mop.10461 Google Scholar
11. Jung, B. H. and T. K. Sarkar, "Transient scattering from threedimensional conducting bodies by using magnetic field integral equation," J. of Electromagn. Waves andApplic at., Vol. 16, No. 1, 111-128, 2002. Google Scholar
12. Sarkar, T. K. and J. Koh, "Generation of a wide-band electromagnetic response through a Laguerre expansion using early-time and low-frequency data," IEEE Trans. Antennas Propagat., Vol. 50, No. 5, 1408-1416, 2002. Google Scholar
13. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
14. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 276-281, 1984.
doi:10.1109/TAP.1984.1143304 Google Scholar
15. Rao, S. M., "Electromagnetic scattering and radiation of arbitrarily- shaped surfaces by triangular patch modeling," Ph.D. Dissertation, No. 8, 1980. Google Scholar
16. Van Bladel, J., Electromagnetic Fields, Hemisphere Publishing Coporation, 1985.
17. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electromagnetics, 1973. Google Scholar
18. Poularikas, A. D., The Transforms andApplic ations Handbook, IEEE Press, 1996.
19. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, 1980.
20. Chung, Y. S., T. K. Sarkar, B. H. Jung, and J. Zhong, "Solution of time domain electric field integral equation using an unconditionally stable methodology," IEEE Trans. Antennas Propagat.. Google Scholar
21. Chung, Y. S, T. K. Sarkar, and B. H. Jung, "Solution of time domain magnetic field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett.. Google Scholar
22. Chung, Y. S., T. K. Sarkar, and B. H. Jung, "An unconditionslly stable scheme for finite difference time domain (FDTD) method," IEEE Trans. Microwave Theory andT ech.. Google Scholar