1. Rokhlin, V., "Rapid solution of integral equation of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C Google Scholar
2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 6, 7-12, 1993.
doi:10.1109/74.250128 Google Scholar
3. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Microwave Opt. Tech. Lett., Vol. 7, No. 10, 466-470, 1994. Google Scholar
4. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetics scattering," Microwave Opt. Tech. Lett., Vol. 10, No. 1, 14-19, 1995. Google Scholar
5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
6. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871 Google Scholar
7. Nie, X. C., L. W. Li, N. Yuan, and Y. T. Soon, "Precorrected- FFT algorithm for solving combined field integral equations in electromagnetic scattering," J. Electromag. Waves Applicat., Vol. 16, No. 8, 1171-1187, 2002. Google Scholar
8. Nie, X. C., L.W. Li, N. Yuan, Y. T. Soon, and Y. B. Gan, "Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method," Microwave Opt. Tech. Lett., Vol. 34, No. 6, 438-442, 2002.
doi:10.1002/mop.10488 Google Scholar
9. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "A fast integral equation solver for electromagnetic scattering problems," IEEE APSInt. Symp. Dig., Vol. 1, 416-419, 1994. Google Scholar
10. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
doi:10.1029/96RS02504 Google Scholar
11. Ling, F., C. F. Wang, and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures," J. Electromag. Waves Applicat., Vol. 12, No. 8, 1021-1038, 1998. Google Scholar
12. Ling, F., C. F. Wang, and J. M. Jin, "An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image method," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 832-839, 2000. Google Scholar
13. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430 Google Scholar
14. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A., Vol. 11, No. 4, 1383-1398, 1994. Google Scholar
15. Li, J. Y., L. W. Li, and Z. Z. Oo, "Electromagnetic scattering by a mixture of conducting and dielectric objects: Analysis using method of moments," accepted by IEEE Trans. Vehicular Technology.. Google Scholar
16. Poggio, A. J. and E. K. Miller, "Integral equation solution of three dimensional scattering problems," Computer Techniques for Electromagnetics, 1973. Google Scholar
17. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat., Vol. 25, No. 6, 789-795, 1977.
doi:10.1109/TAP.1977.1141685 Google Scholar
18. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977. Google Scholar
19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar